175 research outputs found

    Immune response to Mycoplasma pneumoniae P1 and P116 in patients with atypical pneumonia analyzed by ELISA

    Get PDF
    BACKGROUND: Serology is often used for the diagnosis of Mycoplasma pneumoniae. It is important to identify specific antigens that can distinguish between the presence or absence of antibodies against M. pneumoniae. The two proteins, P116 and P1, are found to be immunogenic. By using these in ELISA it is possible to identify an immune response against M. pneumoniae in serum samples. RESULTS: A recombinant protein derived from the P116 protein and one from the P1 protein were used in two ELISA tests, rP116-ELISA and rP1-ELISA. Human serum samples from patients with atypical pneumonia were tested and compared to the results of the complement fixation test. There was a good agreement between the two tests but the rP1-ELISA showed the best discrimination between positive and negative samples. CONCLUSION: Two ELISA tests based on recombinant proteins have been analysed and compared to the complement fixation test results. The two ELISA tests were found suitable for use in serodiagnostics of M. pneumoniae infections. The use of specific antigens eliminates the risk of cross reaction to an immune response against other bacteria

    Induction of Interferon-Stimulated Genes by Chlamydia pneumoniae in Fibroblasts Is Mediated by Intracellular Nucleotide-Sensing Receptors

    Get PDF
    BACKGROUND: Recognition of microorganisms by the innate immune system is mediated by pattern recognition receptors, including Toll-like receptors and cytoplasmic RIG-I-like receptors. Chlamydia, which include several human pathogenic species, are obligate intracellular gram-negative bacteria that replicate in cytoplasmic vacuoles. The infection triggers a host response contributing to both bacterial clearance and tissue damage. For instance, type I interferons (IFN)s have been demonstrated to exacerbate the course of Chlamydial lung infections in mice. METHODS/PRINCIPAL FINDINGS: Here we show that Chlamydia pneumoniae induces expression of IFN-stimulated genes (ISG)s dependent on recognition by nucleotide-sensing Toll-like receptors and RIG-I-like receptors, localized in endosomes and the cytoplasm, respectively. The ISG response was induced with a delayed kinetics, compared to virus infections, and was dependent on bacterial replication and the bacterial type III secretion system (T3SS). CONCLUSIONS/SIGNIFICANCE: Activation of the IFN response during C. pneumoniae infection is mediated by intracellular nucleotide-sensing PRRs, which operate through a mechanism dependent on the bacterial T3SS. Strategies to inhibit the chlamydial T3SS may be used to limit the detrimental effects of the type I IFN system in the host response to Chlamydia infection

    Photosystem II Functionality in Barley Responds Dynamically to Changes in Leaf Manganese Status

    Get PDF
    A catalytic manganese (Mn) cluster is required for the oxidation of water in the oxygen-evolving complex (OEC) of photosystem II (PSII) in plants. Despite this essential role of Mn in generating the electrons driving photosynthesis, limited information is available on how Mn deficiency affects PSII functionality. We have here used parameters derived from measurements of fluorescence induction kinetics (OJIP transients), non-photochemical quenching and PSII subunit composition to investigate how latent Mn deficiency changes the photochemistry in two barley genotypes differing in Mn efficiency. Mn deficiency caused dramatic reductions in the quantum yield of PSII and led to the appearance of two new inflection points, the K step and the D dip, in the OJIP fluorescence transients, indicating severe damage to the OEC. In addition, Mn deficiency decreased the ability to induce non-photochemical quenching (NPQ) in the light, rendering the plants incapable of dissipating excess energy in a controlled way. Thus, the Mn deficient plants became severely affected in their ability to recover from high light-induced photoinhibition, especially under strong Mn deficiency. Interestingly, the Mn-efficient genotype was able to maintain a higher non-photochemical quenching than the Mn-inefficient genotype when exposed to mild Mn deficiency. However, during severe Mn deficiency, there were no differences between the two genotypes, suggesting a general loss of the ability to disassemble and repair PSII. The pronounced defects of PSII activity were supported by a dramatic decrease in the abundance of the OEC protein subunits, PsbP and PsbQ in response to Mn deficiency for both genotypes. We conclude that regulation of photosynthetic performance by means of maintaining and inducing NPQ mechanisms contribute to genotypic differences in the Mn efficiency of barley genotypes growing under conditions with mild Mn deficiency
    • …
    corecore