15 research outputs found

    Lectin-mediated bacterial modulation by the intestinal nematode Ascaris suum

    Get PDF
    Ascariasis is a global health problem for humans and animals. Adult Ascaris nematodes are long-lived in the host intestine where they interact with host cells as well as members of the microbiota resulting in chronic infections. Nematode interactions with host cells and the microbial environment are prominently mediated by parasite-secreted proteins and peptides possessing immunomodulatory and antimicrobial activities. Previously, we discovered the C-type lectin protein AsCTL-42 in the secreted products of adult Ascaris worms. Here we tested recombinant AsCTL-42 for its ability to interact with bacterial and host cells. We found that AsCTL-42 lacks bactericidal activity but neutralized bacterial cells without killing them. Treatment of bacterial cells with AsCTL-42 reduced invasion of intestinal epithelial cells by Salmonella. Furthermore, AsCTL-42 interacted with host myeloid C-type lectin receptors. Thus, AsCTL-42 is a parasite protein involved in the triad relationship between Ascaris, host cells, and the microbiota

    A SARS-CoV-2 neutralizing antibody protects from lung pathology in a COVID-19 hamster model

    Get PDF
    The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from ten COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb CV07-209 neutralized authentic SARS-CoV-2 with IC(50) of 3.1 ng/ml. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 A revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2 neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy

    A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model

    Get PDF
    The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from 10 COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb, CV07-209, neutralized authentic SARS-CoV-2 with an IC(50) value of 3.1 ng/mL. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 Ã… revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2-neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss, and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy

    Buchbesprechungen

    No full text

    Protein–Protein Interactions Facilitate E4orf6-Dependent Regulation of E1B-55K SUMOylation in HAdV-C5 Infection

    No full text
    The human adenovirus type C5 (HAdV-C5) E1B-55K protein is a multifunctional regulator of HAdV-C5 replication, participating in many processes required for maximal virus production. Its multifunctional properties are primarily regulated by post-translational modifications (PTMs). The most influential E1B-55K PTMs are phosphorylation at highly conserved serine and threonine residues at the C-terminus, and SUMO conjugation to lysines 104 (K104) and 101 (K101) situated in the N-terminal region of the protein, which have been shown to regulate each other. Reversible SUMO conjugation provides a molecular switch that controls key functions of the viral protein, including intracellular trafficking and viral immune evasion. Interestingly, SUMOylation at SUMO conjugation site (SCS) K104 is negatively regulated by another multifunctional HAdV-C5 protein, E4orf6, which is known to form a complex with E1B-55K. To further evaluate the role of E4orf6 in the regulation of SUMO conjugation to E1B-55K, we analyzed different virus mutants expressing E1B-55K proteins with amino acid exchanges in both SCS (K101 and K104) in the presence or absence of E4orf6. We could exclude phosphorylation as factor for E4orf6-mediated reduction of E1B-55K SUMOylation. In fact, we demonstrate that a direct interaction between E1B-55K and E4orf6 is required to reduce E1B-55K SUMOylation. Additionally, we show that an E4orf6-mediated decrease of SUMO conjugation to K101 and K104 result in impaired co-localization of E1B-55K and SUMO in viral replication compartments. These findings indicate that E4orf6 inhibits E1B-55K SUMOylation, which could favor assembly of E4orf6-dependent E3 ubiquitin ligase complexes that are known to degrade a variety of host restriction factors by proteasomal degradation and, thereby, promote viral replication
    corecore