32,202 research outputs found

    Calculating photonic Green's functions using a non-orthogonal finite difference time domain method

    Full text link
    In this paper we shall propose a simple scheme for calculating Green's functions for photons propagating in complex structured dielectrics or other photonic systems. The method is based on an extension of the finite difference time domain (FDTD) method, originally proposed by Yee, also known as the Order-N method, which has recently become a popular way of calculating photonic band structures. We give a new, transparent derivation of the Order-N method which, in turn, enables us to give a simple yet rigorous derivation of the criterion for numerical stability as well as statements of charge and energy conservation which are exact even on the discrete lattice. We implement this using a general, non-orthogonal co-ordinate system without incurring the computational overheads normally associated with non-orthogonal FDTD. We present results for local densities of states calculated using this method for a number of systems. Firstly, we consider a simple one dimensional dielectric multilayer, identifying the suppression in the state density caused by the photonic band gap and then observing the effect of introducing a defect layer into the periodic structure. Secondly, we tackle a more realistic example by treating a defect in a crystal of dielectric spheres on a diamond lattice. This could have application to the design of super-efficient laser devices utilising defects in photonic crystals as laser cavities.Comment: RevTex file. 10 pages with 8 postscript figures. Submitted to Phys Rev

    Lamp pumped Nd:YAG laser. Space-qualifiable Nd:YAG laser for optical communications

    Get PDF
    Results are given of a program concerned with the design, fabrication, and evaluation of alkali pump lamps for eventual use in a space qualified Nd:YAG laser system. The study included evaluation of 2mm through 6mm bore devices. Primary emphasis was placed upon the optimization of the 4mm bore lamp and later on the 6mm bore lamp. As part of this effort, reference was made to the Sylvania work concerned with the theoretical modeling of the Nd:YAG laser. With the knowledge gained, a projection of laser performance was made based upon realistic lamp parameters which should easily be achieved during following developmental efforts. Measurements were made on the lamp performance both in and out of the cavity configuration. One significant observation was that for a constant vapor pressure device, the spectral and fluorescent output did not vary for vacuum or argon environment. Therefore, the laser can be operated in an inert environment (eg. argon) with no degradation in output. Laser output of 3.26 watts at 430 watts input was obtained for an optimized 4mm bore lamp

    Interplay of IR-Improved DGLAP-CS Theory and NLO Parton Shower MC Precision

    Full text link
    We present the interplay between the new IR-improved DGLAP-CS theory and the precision of NLO parton shower/ME matched MC`s as it is realized by the new MC Herwiri1.031 in interface to MC@NLO. We discuss phenomenological implications using comparisons with recent LHC data on single heavy gauge boson production.Comment: 8 pages, 4 figures; presented by BFLW at ICHEP 201

    Melt-growth dynamics in CdTe crystals

    Full text link
    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt-growth dynamics and fine-scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt →\rightarrow crystal transformation. Here we demonstrate successful molecular dynamics simulations of melt-growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during the melt-growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical method

    Reduced dynamics of Ward solitons

    Full text link
    The moduli space of static finite energy solutions to Ward's integrable chiral model is the space MNM_N of based rational maps from \CP^1 to itself with degree NN. The Lagrangian of Ward's model gives rise to a K\"ahler metric and a magnetic vector potential on this space. However, the magnetic field strength vanishes, and the approximate non--relativistic solutions to Ward's model correspond to a geodesic motion on MNM_N. These solutions can be compared with exact solutions which describe non--scattering or scattering solitons.Comment: Final version, to appear in Nonlinearit
    • …
    corecore