32,202 research outputs found
Calculating photonic Green's functions using a non-orthogonal finite difference time domain method
In this paper we shall propose a simple scheme for calculating Green's
functions for photons propagating in complex structured dielectrics or other
photonic systems. The method is based on an extension of the finite difference
time domain (FDTD) method, originally proposed by Yee, also known as the
Order-N method, which has recently become a popular way of calculating photonic
band structures. We give a new, transparent derivation of the Order-N method
which, in turn, enables us to give a simple yet rigorous derivation of the
criterion for numerical stability as well as statements of charge and energy
conservation which are exact even on the discrete lattice. We implement this
using a general, non-orthogonal co-ordinate system without incurring the
computational overheads normally associated with non-orthogonal FDTD.
We present results for local densities of states calculated using this method
for a number of systems. Firstly, we consider a simple one dimensional
dielectric multilayer, identifying the suppression in the state density caused
by the photonic band gap and then observing the effect of introducing a defect
layer into the periodic structure. Secondly, we tackle a more realistic example
by treating a defect in a crystal of dielectric spheres on a diamond lattice.
This could have application to the design of super-efficient laser devices
utilising defects in photonic crystals as laser cavities.Comment: RevTex file. 10 pages with 8 postscript figures. Submitted to Phys
Rev
Lamp pumped Nd:YAG laser. Space-qualifiable Nd:YAG laser for optical communications
Results are given of a program concerned with the design, fabrication, and evaluation of alkali pump lamps for eventual use in a space qualified Nd:YAG laser system. The study included evaluation of 2mm through 6mm bore devices. Primary emphasis was placed upon the optimization of the 4mm bore lamp and later on the 6mm bore lamp. As part of this effort, reference was made to the Sylvania work concerned with the theoretical modeling of the Nd:YAG laser. With the knowledge gained, a projection of laser performance was made based upon realistic lamp parameters which should easily be achieved during following developmental efforts. Measurements were made on the lamp performance both in and out of the cavity configuration. One significant observation was that for a constant vapor pressure device, the spectral and fluorescent output did not vary for vacuum or argon environment. Therefore, the laser can be operated in an inert environment (eg. argon) with no degradation in output. Laser output of 3.26 watts at 430 watts input was obtained for an optimized 4mm bore lamp
Interplay of IR-Improved DGLAP-CS Theory and NLO Parton Shower MC Precision
We present the interplay between the new IR-improved DGLAP-CS theory and the
precision of NLO parton shower/ME matched MC`s as it is realized by the new MC
Herwiri1.031 in interface to MC@NLO. We discuss phenomenological implications
using comparisons with recent LHC data on single heavy gauge boson production.Comment: 8 pages, 4 figures; presented by BFLW at ICHEP 201
Melt-growth dynamics in CdTe crystals
We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal
melt-growth dynamics and fine-scale defect formation mechanisms in CdTe
crystals. Previous molecular dynamics simulations of semiconductors have shown
qualitatively incorrect behavior due to the lack of an interatomic potential
capable of predicting both crystalline growth and property trends of many
transitional structures encountered during the melt crystal
transformation. Here we demonstrate successful molecular dynamics simulations
of melt-growth in CdTe using a BOP that significantly improves over other
potentials on property trends of different phases. Our simulations result in a
detailed understanding of defect formation during the melt-growth process.
Equally important, we show that the new BOP enables defect formation mechanisms
to be studied at a scale level comparable to empirical molecular dynamics
simulation methods with a fidelity level approaching quantum-mechanical method
Reduced dynamics of Ward solitons
The moduli space of static finite energy solutions to Ward's integrable
chiral model is the space of based rational maps from \CP^1 to itself
with degree . The Lagrangian of Ward's model gives rise to a K\"ahler metric
and a magnetic vector potential on this space. However, the magnetic field
strength vanishes, and the approximate non--relativistic solutions to Ward's
model correspond to a geodesic motion on . These solutions can be compared
with exact solutions which describe non--scattering or scattering solitons.Comment: Final version, to appear in Nonlinearit
- …