280 research outputs found

    Abrupt Change of Josephson Plasma Frequency at the Phase Boundary of the Bragg Glass in Bi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We report the first detailed and quantitative study of the Josephson coupling energy in the vortex liquid, Bragg glass and vortex glass phases of Bi_2Sr_2CaCu_2O_{8+\delta} by the Josephson plasma resonance. The measurements revealed distinct features in the T- and H-dependencies of the plasma frequency ωpl\omega_{pl} for each of these three vortex phases. When going across either the Bragg-to-vortex glass or the Bragg-to-liquid transition line, ωpl\omega_{pl} shows a dramatic change. We provide a quantitative discussion on the properties of these phase transitions, including the first order nature of the Bragg-to-vortex glass transition.Comment: 5pages, 4figure

    Microscopic theory of thermal phase slips in clean narrow superconducting wires

    Full text link
    We consider structure of a thermal phase-slip center for a simple microscopic model of a clean one-dimensional superconductors in which superconductivity occurs only within one conducting channel or several identical channels. Surprisingly, the Eilenberger equations describing the saddle-point configuration allow for exact analytical solution in the whole temperature and current range. This solution allows us to derive a closed expression for the free-energy barrier, which we use to compute its temperature and current dependences

    Evidence for LineLike Vortex Liquid Phase in Tl2_2Ba2_2CaCu2_2O8_8 Probed by the Josephson Plasma Resonance

    Full text link
    We measured the Josephson plasma resonance (JPR) in optimally doped Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} thin films using terahertz time-domain spectroscopy in transmission. The temperature and magnetic field dependence of the JPR frequency shows that the c-axis correlations of pancake vortices remain intact at the transition from the vortex solid to the liquid phase. In this respect Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} films, withanisotropy parameter γ≈150\gamma\approx 150, are similar to the less anisotropic YBa2_2Cu3_3O7−δ_{7-\delta} (γ≈8)(\gamma\approx 8) rather than to the most anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals γ≥500\gamma\geq 500).Comment: Submitted to Physical Review Letter

    Flux melting in BSCCO: Incorporating both electromagnetic and Josephson couplings

    Full text link
    Multilevel Monte Carlo simulations of a BSCCO system are carried out including both Josephson as well as electromagnetic couplings for a range of anisotropies. A first order melting transition of the flux lattice is seen on increasing the temperature and/or the magnetic field. The phase diagram for BSCCO is obtained for different values of the anisotropy parameter γ\gamma. The best fit to the experimental results of D. Majer {\it et al.} [Phys. Rev. Lett. {\bf 75}, 1166 (1995)] is obtained for γ≈250\gamma\approx 250 provided one assumes a temperature dependence λ2(0)/λ2(T)=1−t\lambda^2(0)/\lambda^2(T)=1-t of the penetration depth with t=T/Tct=T/T_c. Assuming a dependence λ2(0)/λ2(T)=1−t2\lambda^2(0)/\lambda^2(T)=1-t^2 the best fit is obtained for γ≈450 \gamma\approx 450. For finite anisotropy the data is shown to collapse on a straight line when plotted in dimensionless units which shows that the melting transition can be satisfied with a single Lindemann parameter whose value is about 0.3. A different scaling applies to the γ=∞\gamma=\infty case. The energy jump is measured across the transition and for large values of γ\gamma it is found to increase with increasing anisotropy and to decrease with increasing magnetic field. For infinite anisotropy we see a 2D behavior of flux droplets with a transition taking place at a temperature independent of the magnetic field. We also show that for smaller values of anisotropy it is reasonable to replace the electromagnetic coupling with an in-plane interaction represented by a Bessel function of the second kind (K0K_0), thus justifying our claim in a previous paper.Comment: 12 figures, revtex

    Vortex shear effects in layered superconductors

    Full text link
    Motivated by recent transport and magnetization measurements in BSCCO samples [B. Khaykovich et. al., Phys. Rev. B 61, R9261 (2000)], we present a simple macroscopic model describing effects of inhomogeneous current distribution and shear in a layered superconductor. Parameters of the model are deduced from a microscopic calculation. Our model accounts for the strong current non-linearities and the re-entrant temperature dependence observed in the experiment.Comment: 11 pages, 7 figures, submitted to Phys. Rev.

    Josephson Coupling, Phase Correlations, and Josephson Plasma Resonance in Vortex Liquid Phase

    Full text link
    Josephson plasma resonance has been introduced recently as a powerful tool to probe interlayer Josephson coupling in different regions of the vortex phase diagram in layered superconductors. In the liquid phase, the high temperature expansion with respect to the Josephson coupling connects the Josephson plasma frequency with the phase correlation function. This function, in turn, is directly related to the pair distribution function of the liquid. We develop a recipe to extract the phase and density correlation functions from the dependencies of the plasma resonance frequency ωp(B)\omega_p({\bf B}) and the cc axis conductivity σc(B)\sigma_c({\bf B}) on the {\it ab}-component of the magnetic field at fixed {\it c} -component. Using Langevin dynamic simulations of two-dimensional vortex arrays we calculate density and phase correlation functions at different temperatures. Calculated phase correlations describe very well the experimental angular dependence of the plasma resonance field. We also demonstrate that in the case of weak damping in the liquid phase, broadening of the JPR line is caused mainly by random Josephson coupling arising from the density fluctuations of pancake vortices. In this case the JPR line has a universal shape, which is determined only by parameters of the superconductors and temperature.Comment: 22 pages, 6 figures, to appear in Phys. Rev. B, December

    Vortex Matter Transition in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} under Tilted Fields

    Full text link
    Vortex phase diagram under tilted fields from the cc axis in Bi2{}_2Sr2{}_2CaCu2{}_2O8+y{}_{8+y} is studied by local magnetization hysteresis measurements using Hall probes. When the field is applied at large angles from the cc axis, an anomaly (Hp∗H_p^\ast) other than the well-known peak effect (HpH_p) are found at fields below HpH_p. The angular dependence of the field Hp∗H_p^\ast is nonmonotonic and clearly different from that of HpH_p and depends on the oxygen content of the crystal. The results suggest existence of a vortex matter transition under tilted fields. Possible mechanisms of the transition are discussed.Comment: Revtex, 4 pages, some corrections are adde

    Microcantilever Studies of Angular Field Dependence of Vortex Dynamics in BSCCO

    Full text link
    Using a nanogram-sized single crystal of BSCCO attached to a microcantilever we demonstrate in a direct way that in magnetic fields nearly parallel to the {\it ab} plane the magnetic field penetrates the sample in the form of Josephson vortices rather than in the form of a tilted vortex lattice. We further investigate the relation between the Josephson vortices and the pancake vortices generated by the perpendicular field component.Comment: 5 pages, 8 figure

    Hysteretic creep of elastic manifolds

    Full text link
    We study the dynamic response of driven systems in the presence of quenched disorder. A simple heuristic model for hysteretic creep of elastic manifolds is proposed and evaluated numerically. It provides a qualitative explanation of the phenomenology observed in experiments on high-temperature superconductors.Comment: 4 pages Revtex + epsf, plus 3 figures postscrip

    Interlayer Quasiparticle Transport in the Vortex State of Josephson Coupled Superconductors

    Get PDF
    We calculate the dependence of the interlayer quasiparticle conductivity, σq\sigma_q, in a Josephson coupled d-wave superconductor on the magnetic field B||c and the temperature T. We consider a clean superconductor with resonant impurity scattering and a dominant coherent interlayer tunneling. When pancake vortices in adjacent layers are weakly correlated at low T the conductivity increases sharply with B before reaching an extended region of slow linear growth, while at high T it initially decreases and then reaches the same linear regime. For correlated pancakes σq\sigma_q increases much more strongly with the applied field.Comment: 4 pages, 3 figure
    • …
    corecore