3,618 research outputs found
Generalized Boltzmann Equation in a Manifestly Covariant Relativistic Statistical Mechanics
We consider the relativistic statistical mechanics of an ensemble of
events with motion in space-time parametrized by an invariant ``historical
time'' We generalize the approach of Yang and Yao, based on the Wigner
distribution functions and the Bogoliubov hypotheses, to find the approximate
dynamical equation for the kinetic state of any nonequilibrium system to the
relativistic case, and obtain a manifestly covariant Boltzmann-type equation
which is a relativistic generalization of the Boltzmann-Uehling-Uhlenbeck (BUU)
equation for indistinguishable particles. This equation is then used to prove
the -theorem for evolution in In the equilibrium limit, the
covariant forms of the standard statistical mechanical distributions are
obtained. We introduce two-body interactions by means of the direct action
potential where is an invariant distance in the Minkowski
space-time. The two-body correlations are taken to have the support in a
relative -invariant subregion of the full spacelike region. The
expressions for the energy density and pressure are obtained and shown to have
the same forms (in terms of an invariant distance parameter) as those of the
nonrelativistic theory and to provide the correct nonrelativistic limit
A Comprehensive Survey of Brane Tilings
An infinite class of gauge theories can be engineered on
the worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of
setup has multiple applications, ranging from the gauge/gravity correspondence
to local model building in string phenomenology. Brane tilings fully encode the
gauge theories on the D3-branes and have substantially simplified their
connection to the probed geometries. The purpose of this paper is to push the
boundaries of computation and to produce as comprehensive a database of brane
tilings as possible. We develop efficient implementations of brane tiling tools
particularly suited for this search. We present the first complete
classification of toric Calabi-Yau 3-folds with toric diagrams up to area 8 and
the corresponding brane tilings. This classification is of interest to both
physicists and mathematicians alike.Comment: 39 pages. Link to Mathematica modules provide
Approximate resonance states in the semigroup decomposition of resonance evolution
The semigroup decomposition formalism makes use of the functional model for
class contractive semigroups for the description of the time evolution
of resonances. For a given scattering problem the formalism allows for the
association of a definite Hilbert space state with a scattering resonance. This
state defines a decomposition of matrix elements of the evolution into a term
evolving according to a semigroup law and a background term. We discuss the
case of multiple resonances and give a bound on the size of the background
term. As an example we treat a simple problem of scattering from a square
barrier potential on the half-line.Comment: LaTex 22 pages 3 figure
Equilibrium Relativistic Mass Distribution for Indistinguishable Events
A manifestly covariant relativistic statistical mechanics of the system of
indistinguishable events with motion in space-time parametrized by an
invariant ``historical time'' is considered. The relativistic mass
distribution for such a system is obtained from the equilibrium solution of the
generalized relativistic Boltzmann equation by integration over angular and
hyperbolic angular variables. All the characteristic averages are calculated.
Expressions for the pressure and the density of events are found and the
relativistic equation of state is obtained. The Galilean limit is considered;
the theory is shown to pass over to the usual nonrelativistic statistical
mechanics of indistinguishable particles.Comment: TAUP-2115-9
INTRINSIC MECHANISM FOR ENTROPY CHANGE IN CLASSICAL AND QUANTUM EVOLUTION
It is shown that the existence of a time operator in the Liouville space
representation of both classical and quantum evolution provides a mechanism for
effective entropy change of physical states. In particular, an initially
effectively pure state can evolve under the usual unitary evolution to an
effectively mixed state.Comment: 20 pages. For more information or comments contact E. Eisenberg at
[email protected] (internet)
Relativistic mass distribution in event-anti-event system and ``realistic'' equation of state for hot hadronic matter
We find the equation of state which gives the value of
the sound velocity in agreement with the ``realistic'' equation of
state for hot hadronic matter suggested by Shuryak, in the framework of a
covariant relativistic statistical mechanics of an event--anti-event system
with small chemical and mass potentials. The relativistic mass distribution for
such a system is obtained and shown to be a good candidate for fitting hadronic
resonances, in agreement with the phenomenological models of Hagedorn, Shuryak,
{\it et al.} This distribution provides a correction to the value of specific
heat 3/2, of the order of 5.5\%, at low temperatures.Comment: 19 pages, report TAUP-2161-9
Quaternionic Electroweak Theory
We explicitly develop a quaternionic version of the electroweak theory, based
on the local gauge group . The need of a complex
projection for our Lagrangian and the physical significance of the anomalous
scalar solutions are also discussed.Comment: 12 pages, Revtex, submitted to J. Phys.
On the Resolution of Time Problem in Quantum Gravity Induced from Unconstrained Membranes
The relativistic theory of unconstrained -dimensional membranes
(-branes) is further developed and then applied to the embedding model of
induced gravity. Space-time is considered as a 4-dimensional unconstrained
membrane evolving in an -dimensional embedding space. The parameter of
evolution or the evolution time is a distinct concept from the
coordinate time . Quantization of the theory is also discussed. A
covariant functional Schr\" odinger equations has a solution for the wave
functional such that it is sharply localized in a certain subspace of
space-time, and much less sharply localized (though still localized) outside
. With the passage of evolution the region moves forward in space-time.
Such a solution we interpret as incorporating two seemingly contradictory
observations: (i) experiments clearly indicate that space-time is a continuum
in which events are existing; (ii) not the whole 4-dimensional space-time, but
only a 3-dimensional section which moves forward in time is accessible to our
immediate experience. The notorious problem of time is thus resolved in our
approach to quantum gravity. Finally we include sources into our unconstrained
embedding model. Possible sources are unconstrained worldlines which are free
from the well known problem concerning the Maxwell fields generated by charged
unconstrained point particles.Comment: 22 Page
High Temperature Thermopower in La_{2/3}Ca_{1/3}MnO_3 Films: Evidence for Polaronic Transport
Thermoelectric power, electrical resistivity and magnetization experiments,
performed in the paramagnetic phase of La_{2/3}Ca_{1/3}MnO_3, provide evidence
for polaron-dominated conduction in CMR materials. At high temperatures, a
large, nearly field-independent difference between the activation energies for
resistivity (rho) and thermopower (S), a characteristic of Holstein Polarons,
is observed, and ln(rho) ceases to scale with the magnetization. On approaching
T_c, both energies become field-dependent, indicating that the polarons are
magnetically polarized. Below T_c, the thermopower follows a law S(H) prop.
1/rho (H) as in non saturated ferromagnetic metals.Comment: 10 pages, 5 .gif figures. Phys. Rev B (in press
- …