1,290 research outputs found

    Diffuse Extragalactic Background Light versus Deep Galaxy Counts in the Subaru Deep Field: Missing Light in the Universe?

    Full text link
    Deep optical and near-infrared galaxy counts are utilized to estimate the extragalactic background light (EBL) coming from normal galactic light in the universe. Although the slope of number-magnitude relation of the faintest counts is flat enough for the count integration to converge, considerable fraction of EBL from galaxies could still have been missed in deep galaxy surveys because of various selection effects including the cosmological dimming of surface brightness of galaxies. Here we give an estimate of EBL from galaxy counts, in which these selection effects are quantitatively taken into account for the first time, based on reasonable models of galaxy evolution which are consistent with all available data of galaxy counts, size, and redshift distributions. We show that the EBL from galaxies is best resolved into discrete galaxies in the near-infrared bands (J, K) by using the latest data of the Subaru Deep Field; more than 80-90% of EBL from galaxies has been resolved in these bands. Our result indicates that the contribution by missing galaxies cannot account for the discrepancy between the count integration and recent tentative detections of diffuse EBL in the K-band (2.2 micron), and there may be a very diffuse component of EBL which has left no imprints in known galaxy populations.Comment: ApJ Letters in press. Two new reports on the diffuse EBL at 1.25 and 2.2 microns are added to the reference list and Table

    Evolution of the Luminosity Density in the Universe: Implications for the Nonzero Cosmological Constant

    Get PDF
    We show that evolution of the luminosity density of galaxies in the universe provides a powerful test for the geometry of the universe. Using reasonable galaxy evolution models of population synthesis which reproduce the colors of local galaxies of various morphological types, we have calculated the luminosity density of galaxies as a function of redshift zz. Comparison of the result with recent measurements by the Canada-France Redshift Survey in three wavebands of 2800{\AA}, 4400{\AA}, and 1 micron at z<1 indicates that the \Lambda-dominated flat universe with \lambda_0 \sim 0.8 is favored, and the lower limit on \lambda_0 yields 0.37 (99% C.L.) or 0.53 (95% C.L.) if \Omega_0+\lambda_0=1. The Einstein-de Sitter universe with (\Omega_0, \lambda_0)=(1, 0) and the low-density open universe with (0.2, 0) are however ruled out with 99.86% C.L. and 98.6% C.L., respectively. The confidence levels quoted apply unless the standard assumptions on galaxy evolution are drastically violated. We have also calculated a global star formation rate in the universe to be compared with the observed rate beyond z \sim 2. We find from this comparison that spiral galaxies are formed from material accretion over an extended period of a few Gyrs, while elliptical galaxies are formed from initial star burst at z >~ 5 supplying enough amount of metals and ionizing photons in the intergalactic medium.Comment: 11 pages including 3 figures, LaTeX, uses AASTeX. To Appear in ApJ Letter

    Origin of Two Distinct Populations in Dwarf Spheroidal Galaxies

    Full text link
    We study the chemical and kinematic properties of the first galaxies which formed at a high redshift, using high resolution cosmological numerical simulations, and compared them with the recent observational results for the Sculptor dwarf spheroidal galaxy by Tolstoy et al., who found two distinct stellar populations: the lower metallicity stars are more spatially extended and possess a higher velocity dispersion than the higher metallicity stars. Our calculations reproduce these observations as the result of a steep metallicity gradient, within a single populations, induced by dissipative collapse of the gas component. We also predict strong [N/O] enhancements in the lowest metallicity stars in dwarf spheroidals, due to the preferential retention of ejected gas from intermediate mass stars, compared to Type II supernovae.Comment: 11 pages, 10 figures, accepted for publication in Ap

    Finding Galaxy Groups In Photometric Redshift Space: the Probability Friends-of-Friends (pFoF) Algorithm

    Full text link
    We present a structure finding algorithm designed to identify galaxy groups in photometric redshift data sets: the probability friends-of-friends (pFoF) algorithm. This algorithm is derived by combining the friends-of-friends algorithm in the transverse direction and the photometric redshift probability densities in the radial dimension. The innovative characteristic of our group-finding algorithm is the improvement of redshift estimation via the constraints given by the transversely connected galaxies in a group, based on the assumption that all galaxies in a group have the same redshift. Tests using the Virgo Consortium Millennium Simulation mock catalogs allow us to show that the recovery rate of the pFoF algorithm is larger than 80% for mock groups of at least 2\times10^{13}M_{\sun}, while the false detection rate is about 10% for pFoF groups containing at least ∌8\sim8 net members. Applying the algorithm to the CNOC2 group catalogs gives results which are consistent with the mock catalog tests. From all these results, we conclude that our group-finding algorithm offers an effective yet simple way to identify galaxy groups in photometric redshift catalogs.Comment: AJ accepte

    Galaxy number counts in the Hubble Deep Field as a strong constraint on a hierarchical galaxy formation model

    Get PDF
    Number counts of galaxies are re-analyzed using a semi-analytic model (SAM) of galaxy formation based on the hierarchical clustering scenario. We have determined the astrophysical parameters in the SAM that reproduce observations of nearby galaxies, and used them to predict the number counts and redshifts of faint galaxies for three cosmological models for (1) the standard cold dark matter (CDM) universe, (2) a low-density flat universe with nonzero cosmological constant, and (3) a low-density open universe with zero cosmological constant. The novelty of our SAM analysis is the inclusion of selection effects arising from the cosmological dimming of surface brightness of high-redshift galaxies, and also from the absorption of visible light by internal dust and intergalactic \ion{H}{1} clouds. Contrary to previous SAM analyses which do not take into account such selection effects, we find, from comparison with observed counts and redshifts of faint galaxies in the Hubble Deep Field (HDF), that the standard CDM universe is {\it not} preferred, and a low-density universe either with or without cosmological constant is favorable, as suggested by other recent studies. Moreover, we find that a simple prescription for the time scale of star formation (SF), being proportional to the dynamical time scale of the formation of the galactic disk, is unable to reproduce the observed number- redshift relation for HDF galaxies, and that the SF time scale should be nearly independent of redshift, as suggested by other SAM analyses for the formation of quasars and the evolution of damped Ly-α\alpha systems.Comment: 16 pages, 13 figures, LaTeX, using emulateapj5.st
    • 

    corecore