19 research outputs found

    First-principles calculation of the thermal properties of silver

    Full text link
    The thermal properties of silver are calculated within the quasi-harmonic approximation, by using phonon dispersions from density-functional perturbation theory, and the pseudopotential plane-wave method. The resulting free energy provides predictions for the temperature dependence of various quantities such as the equilibrium lattice parameter, the bulk modulus, and the heat capacity. Our results for the thermal properties are in good agreement with available experimental data in a wide range of temperatures. As a by-product, we calculate phonon frequency and Grueneisen parameter dispersion curves which are also in good agreement with experiment.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B April 30, 1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Thermodynamic Properties of the One-Dimensional Extended Quantum Compass Model in the Presence of a Transverse Field

    Full text link
    The presence of a quantum critical point can significantly affect the thermodynamic properties of a material at finite temperatures. This is reflected, e.g., in the entropy landscape S(T; c) in the vicinity of a quantum critical point, yielding particularly strong variations for varying the tuning parameter c such as magnetic field. In this work we have studied the thermodynamic properties of the quantum compass model in the presence of a transverse field. The specific heat, entropy and cooling rate under an adiabatic demagnetization process have been calculated. During an adiabatic (de)magnetization process temperature drops in the vicinity of a field-induced zero-temperature quantum phase transitions. However close to field-induced quantum phase transitions we observe a large magnetocaloric effect
    corecore