72 research outputs found
Structural fire design of SHS, RHS and CHS high strength steel columns
Copyright © The Author(s) 2021. Despite substantial progress in recent years to improve the design guidance for high strength steel (HSS) structural elements, this has mainly been for ambient conditions with their fire response still in need of further research. Accordingly, this paper reports on an investigation into the structural performance of unprotected HSS hollow section columns in fire. Finite element models of columns made from square, circular and rectangular hollow sections are developed and are validated against test data at ambient and elevated temperature. The validated models are employed to perform parametric studies to assess the influence of a range of variables such as the grades of HSS, levels of temperature exposure and cross-sectional geometry. The structural fire design resistance method for a column given in the Eurocode is assessed based on the FE results. Consequently, new buckling curves are proposed, which provide a more accurate prediction of the real capacity and reliability analysis is also performed on the new proposed design formulations
Failure assessment of lightly reinforced floor slabs. I: Experimental investigation
This paper is concerned with the ultimate behavior of lightly reinforced concrete floor slabs under extreme loading conditions. Particular emphasis is given to examining the failure conditions of idealized composite slabs which become lightly reinforced in a fire situation as a result of the early loss of the steel deck. An experimental study is described which focuses on the response of two-way spanning floor slabs with various materials and geometric configurations. The tests enable direct assessment of the influence of a number of key parameters such as the reinforcement type, properties, and ratio on the ultimate response. The results also permit the development of simplified expressions that capture the influence of salient factors such as bond characteristics and reinforcement properties for predicting the ductility of lightly reinforced floor slabs. The companion paper complements the experimental observations with detailed numerical assessments of the ultimate response and proposes analytical models that predict failure of slab members by either reinforcement fracture or compressive crushing of concrete. © 2011 American Society of Civil Engineers
Nonlinear Analysis of a Steel Frame Structure Exposed to Post-Earthquake Fire
Copyright: © 2021 by the authors. The probability of extreme events such as an earthquake, fire or blast occurring during the lifetime of a structure is relatively low but these events can cause serious damage to the structure as well as to human life. Due to the significant consequences for occupant and structural safety, an accurate analysis of the response of structures exposed to these events is required for their design. Some extreme events may occur as a consequence of another hazard, for example, a fire may occur due to the failure of the electrical system of a structure following an earthquake. In such circumstances, the structure is subjected to a multi-hazard loading scenario. A post-earthquake fire (PEF) is one of the major multi-hazard events that is reasonably likely to occur but has been the subject of relatively little research in the available literature. In most international design codes, structures exposed to multi-hazards scenarios such as earthquakes, which are then followed by fires are only analysed and designed for as separate events, even though structures subjected to an earthquake may experience partial damage resulting in a more severe response to a subsequent fire. Most available analysis procedures and design codes do not address the association of the two hazards. Thus, the design of structures based on existing standards may contribute to a significant risk of structural failure. Indeed, a suitable method of analysis is required to investigate the behaviour of structures when exposed to sequential hazards. In this paper, a multi-hazard analysis approach is developed, which considers the damage caused to structures during and after an earthquake through a subsequent thermal analysis. A methodology is developed and employed to study the nonlinear behaviour of a steel framed structure under post-earthquake fire conditions. A three-dimensional nonlinear finite element model of an unprotected steel frame is developed and outlined. View Full-Tex
Ultimate behavior of idealized composite floor elements at ambient and elevated temperature
This paper is concerned with the ultimate behavior of composite floor slabs under extreme loading situations resembling those occurring during severe building fires. The study focuses on the failure state associated with rupture of the reinforcement in idealized slab elements, which become lightly reinforced in a fire situation due to the early loss of the steel deck. The paper describes a fundamental approach for assessing the failure limit associated with reinforcement fracture in lightly reinforced beams, representing idealized slab strips. A description of the ambient-temperature tests on isolated restrained elements, carried out to assess the influence of key material parameters on the failure conditions, is firstly presented. The results of a series of material tests, undertaken mainly to examine the effect of elevated temperature on ductility, are also described. A simplified analytical model is employed, in conjunction with the experimental findings, to assess the salient material parameters and their implications on the ultimate response at both ambient and elevated temperature. © 2009 Springer Science+Business Media, LLC
General anaesthetic and airway management practice for obstetric surgery in England: a prospective, multi-centre observational study
There are no current descriptions of general anaesthesia characteristics for obstetric surgery, despite recent changes to patient baseline characteristics and airway management guidelines. This analysis of data from the direct reporting of awareness in maternity patients' (DREAMY) study of accidental awareness during obstetric anaesthesia aimed to describe practice for obstetric general anaesthesia in England and compare with earlier surveys and best-practice recommendations. Consenting patients who received general anaesthesia for obstetric surgery in 72 hospitals from May 2017 to August 2018 were included. Baseline characteristics, airway management, anaesthetic techniques and major complications were collected. Descriptive analysis, binary logistic regression modelling and comparisons with earlier data were conducted. Data were collected from 3117 procedures, including 2554 (81.9%) caesarean deliveries. Thiopental was the induction drug in 1649 (52.9%) patients, compared with propofol in 1419 (45.5%). Suxamethonium was the neuromuscular blocking drug for tracheal intubation in 2631 (86.1%), compared with rocuronium in 367 (11.8%). Difficult tracheal intubation was reported in 1 in 19 (95%CI 1 in 16-22) and failed intubation in 1 in 312 (95%CI 1 in 169-667). Obese patients were over-represented compared with national baselines and associated with difficult, but not failed intubation. There was more evidence of change in practice for induction drugs (increased use of propofol) than neuromuscular blocking drugs (suxamethonium remains the most popular). There was evidence of improvement in practice, with increased monitoring and reversal of neuromuscular blockade (although this remains suboptimal). Despite a high risk of difficult intubation in this population, videolaryngoscopy was rarely used (1.9%)
Response of restrained stainless steel corrugated web beams at elevated temperature
Research Grants Council Hong Kong under its Theme-based Research Scheme ( SureFire project (T22-505/19-N);RGC Hong Kong GRF Scheme and HK PolyU
- …