4,517 research outputs found

    Reconstructed Jets at RHIC

    Full text link
    To precisely measure jets over a large background such as pile up in high luminosity p+p collisions at LHC, a new generation of jet reconstruction algorithms is developed. These algorithms are also applicable to reconstruct jets in the heavy ion environment where large event multiplicities are produced. Energy loss in the medium created in heavy ion collisions are already observed indirectly via inclusive hadron distributions and di-hadron correlations. Jets can be used to study this energy loss in detail with reduced biases. We review the latest results on jet-medium interactions as seen in A+A collisions at RHIC, focusing on the recent progress on jet reconstruction in heavy ion collisions.Comment: Proceedings for the 26th Winter Workshop on Nuclear Dynamic

    Strange hadrons as dense matter probes

    Get PDF
    The spectra of strange hadrons have been measured in detail as a function of centrality for a variety of collision systems and energies at RHIC. Recent results are presented and compared to those measured at the SPS. The effects of the system size on strange particle production and kinematics are examined. I place specific emphasis on comparing A-A to pp production and discuss how strangeness can be used to probe the dense matter produced in heavy-ion collisions.Comment: Proceedings of the Strange Quark Matter Conference 200

    Resonance production in heavy ion collisions

    Full text link
    Recent results of resonance production from RHIC at sNN=\sqrt{s_{\rm NN}} = 200 GeV and SPS at sNN=\sqrt{s_{\rm NN}} = 17 GeV are presented and discussed in terms of the evolution and freeze-out conditions of a hot and dense fireball medium. Yields and spectra are compared with thermal model predictions at chemical freeze-out. Deviations in the low transverse momentum region of the resonance spectrum of the hadronic decay channel, suggest a strongly interaction hadronic phase between chemical and kinetic freeze-out. Microscopic models including resonance rescattering and regeneration are able to describe the trend of the data. The magnitude of the regeneration cross sections for different inverse decay channels are discussed. Model calculations which include elastic hadronic interactions between chemical freeze-out and thermal freeze-out based on the K(892)/K and Λ\Lambda(1520)/Λ\Lambda ratios suggest a time between two freeze-outs surfaces of Δτ>\Delta \tau> 4 fm/c. The difference in momentum distributions and yields for the ϕ\phi(1020) resonance reconstructed from the leptonic and hadronic decay channels at SPS energy are discussed taking into account the impact of a hadronic phase and possible medium modifications.Comment: 8 pages, 4 figures, conference proceedings (SQM2004

    What do we learn from Resonance Production in Heavy Ion Collisions?

    Full text link
    Resonances with their short life time and strong coupling to the dense and hot medium are suggested as a signature of the early stage of the fireball created in a heavy ion collision \cite{rap00,lut01,lut02}. The comparison of resonances with different lifetimes and quark contents may give information about time evolution and density and temperature of during the expanding of fireball medium. Resonances in elementary reactions have been measured since 1960. Resonance production in elementary collisions compared with heavy ion collisions where we expect to create a hot and dense medium may show the direct of influence of the medium on the resonances. This paper shows a selection of the recent resonance measurements from SPS and RHIC heavy ion colliders.Comment: 10 pages, 8 figures, HotQuarks 2004 conference proceeding

    Jet Reconstruction in Heavy Ion Collisions

    Get PDF
    We examine the problem of jet reconstruction at heavy-ion colliders using jet-area-based background subtraction tools as provided by FastJet. We use Monte Carlo simulations with and without quenching to study the performance of several jet algorithms, including the option of filtering, under conditions corresponding to RHIC and LHC collisions. We find that most standard algorithms perform well, though the anti-kt and filtered Cambridge/Aachen algorithms have clear advantages in terms of the reconstructed transverse-momentum offset and dispersion.Comment: 31 pages, 17 figure

    Resonance Production

    Full text link
    Recent results on rho(770)^0, K(892)^*0, f_0(980), phi(1020), Delta(1232)^++, and Lambda(1520) production in A+A and p+p collisions at SPS and RHIC energies are presented. These resonances are measured via their hadronic decay channels and used as a sensitive tool to examine the collision dynamics in the hadronic medium through their decay and regeneration. The modification of resonance mass, width, and shape due to phase space and dynamical effects are discussed.Comment: 8 pages, 10 figures, proceedings of the Quark Matter 2004, in Oakland, California, to be published in Journal of Physics G: Nuclear and Particle Physic

    Future Experiments in Relativistic Heavy Ion Collisions

    Full text link
    The measurements at RHIC have revealed a new state of matter, which needs to be further characterized in order to better understand its implications for the early evolution of the universe and QCD. I will show that, in the near future, complementary key measurements can be performed at RHIC, LHC, and FAIR. I will focus on results than can be obtained using identified particles, a probe which has been the basis for this conference over the past three decades. The sophisticated detectors, built and planned, for all three accelerator facilities enable us to measure leptons, photons, muons as well as hadrons and resonances of all flavors almost equally well, which makes these experiments unprecedented precision tools for the comprehensive understanding of the physics of the early universe.Comment: 10 pages, 4 figures, Proceedings for Summary Talk at SQM 2007, Levoca, Slovakia, June 24-29, 200

    Jet coherence in QCD media: the antenna radiation spectrum

    Get PDF
    We study the radiation of a highly energetic partonic antenna in a colored state traversing a dense QCD medium. Resumming multiple scatterings of all involved constituents with the medium we derive the general gluon spectrum which encompasses both longitudinal color coherence between scattering centers in the medium, responsible for the well known Landau-Pomeranchuk-Migdal (LPM) effect, and transverse color coherence between partons inside a jet, leading, in vacuum, to angular ordering of the parton shower. We discuss shortly the onset of transverse decoherence which is reached in opaque media. In this regime, the spectrum consists of independent radiation off the antenna constituents.Comment: 15 pages, 2 figures, paper shortened and partly rewritten, references added, results unchange

    An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung

    Full text link
    Two effects, jet broadening and gluon bremsstrahlung induced by the propagation of a highly energetic quark in dense QCD matter, are reconsidered from effective theory point of view. We modify the standard Soft Collinear Effective Theory (SCET) Lagrangian to include Glauber modes, which are needed to implement the interactions between the medium and the collinear fields. We derive the Feynman rules for this Lagrangian and show that it is invariant under soft and collinear gauge transformations. We find that the newly constructed theory SCETG_{\rm G} recovers exactly the general result for the transverse momentum broadening of jets. In the limit where the radiated gluons are significantly less energetic than the parent quark, we obtain a jet energy-loss kernel identical to the one discussed in the reaction operator approach to parton propagation in matter. In the framework of SCETG_{\rm G} we present results for the fully-differential bremsstrahlung spectrum for both the incoherent and the Landau-Pomeranchunk-Migdal suppressed regimes beyond the soft-gluon approximation. Gauge invariance of the physics results is demonstrated explicitly by performing the calculations in both the light-cone and covariant RΟR_{\xi} gauges. We also show how the process-dependent medium-induced radiative corrections factorize from the jet production cross section on the example of the quark jets considered here.Comment: 52 pages, 15 pdf figures, as published in JHE

    The effective action of D6-branes in N=1 type IIA orientifolds

    Full text link
    We use a Kaluza-Klein reduction to compute the low-energy effective action for the massless modes of a spacetime-filling D6-brane wrapped on a special Lagrangian 3-cycle of a type IIA Calabi-Yau orientifold. The modifications to the characteristic data of the N=1 bulk orientifold theory in the presence of a D6-brane are analysed by studying the underlying Type IIA supergravity coupled to the brane worldvolume in the democratic formulation and performing a detailed dualisation procedure. The N=1 chiral coordinates are found to be in agreement with expectations from mirror symmetry. We work out the Kahler potential for the chiral superfields as well as the gauge kinetic functions for the bulk and the brane gauge multiplets including the kinetic mixing between the two. The scalar potential resulting from the dualisation procedure can be formally interpreted in terms of a superpotential. Finally, the gauging of the Peccei-Quinn shift symmetries of the complex structure multiplets reproduces the D-term potential enforcing the calibration condition for special Lagrangian 3-cycles.Comment: 48 pages, v2: typos corrected, references adde
    • 

    corecore