145 research outputs found

    On the Interpretation of the Redshift in a Static Gravitational Field

    Get PDF
    The classical phenomenon of the redshift of light in a static gravitational potential, usually called the gravitational redshift, is described in the literature essentially in two ways: on the one hand the phenomenon is explained through the behaviour of clocks which run the faster the higher they are located in the potential, whereas the energy and frequency of the propagating photon do not change with height. The light thus appears to be redshifted relative to the frequency of the clock. On the other hand the phenomenon is alternatively discussed (even in some authoritative texts) in terms of an energy loss of a photon as it overcomes the gravitational attraction of the massive body. This second approach operates with notions such as the "gravitational mass" or the "potential energy" of a photon and we assert that it is misleading. We do not claim to present any original ideas or to give a comprehensive review of the subject, our goal being essentially a pedagogical one.Comment: latex, 16 pages, to be published in American Journal of Physic

    Monopole decay in the external electric field

    Full text link
    The possibility of the magnetic monopole decay in the constant electric field is investigated and the exponential factor in the probability is obtained. Corrections due to Coulomb interaction are calculated. The relation between masses of particles for the process to exist is obtained.Comment: 13 pages, 8 figure

    Semiclassical Calculation of Photon-Stimulated Schwinger Pair Creation

    Full text link
    We consider the electron-positron pair creation by a photon in an external constant electric field. The presented treatment is based on a purely quasiclassical calculation of the imaginary part of the on-shell photon polarization operator. By using this approach we find the pair production rate for photons with polarization parallel as well as orthogonal to the external electric field in the leading order in the parameter eE/m2eE / m ^ 2, which has been recently found by other methods. For the orthogonal polarization we also find a new contribution to the rate, which is leading in the ratio of the photon energy to the electron mass ω/m\omega/m. We also reproduce by a purely geometrical calculation the exponential factor in the probability of the stimulated pair creation at arbitrary energy of the photon.Comment: 16 pages, 4 figure

    Stochastic current switching in bistable resonant tunneling systems

    Full text link
    Current-voltage characteristics of resonant-tunneling structures often exhibit intrinsic bistabilities. In the bistable region of the I-V curve one of the two current states is metastable. The system switches from the metastable state to the stable one at a random moment in time. The mean switching time \tau depends exponentially on the bias measured from the boundary of the bistable region V_{th}. We find full expressions for \tau (including prefactors) as functions of bias, sample geometry, and in-plane conductivity. Our results take universal form upon appropriate renormalization of the threshold voltage V_{th}. We also show that in large samples the switching initiates inside, at the edge, or at a corner of the sample depending on the parameters of the system.Comment: 21 pages, 5 figure

    Decay of metastable current states in one-dimensional resonant tunneling devices

    Full text link
    Current switching in a double-barrier resonant tunneling structure is studied in the regime where the current-voltage characteristic exhibits intrinsic bistability, so that in a certain range of bias two different steady states of current are possible. Near the upper boundary V_{th} of the bistable region the upper current state is metastable, and because of the shot noise it eventually decays to the stable lower current state. We find the time of this switching process in strip-shaped devices, with the width small compared to the length. As the bias V is tuned away from the boundary value V_{th} of the bistable region, the mean switching time \tau increases exponentially. We show that in long strips \ln\tau \propto (V_{th} -V)^{5/4}, whereas in short strips \ln\tau \propto (V_{th} -V)^{3/2}. The one-dimensional geometry of the problem enables us to obtain analytically exact expressions for both the exponential and the prefactor of \tau. Furthermore, we show that, depending on the parameters of the system, the switching can be initiated either inside the strip, or at its ends.Comment: 12 pages, 5 figures, update to published versio

    The activity-based approach to achieving theoretical and practical consensus in pedagogy of N. F. Talyzina

    Full text link
    The relevance of the problem under study is based on the necessity to solve the permanent problem of the unity of theory and practice in the content of students’ cognitive activity in the modern conditions. The purpose of the article is to analyze and to generalize the main concepts of pedagogy by N.F. Talyzina for implementation of the activity-based approach as a productive means of achieving theoretical and practical consensus in the process of forming students’ cognitive activity. The lead approach to studying this problem is the activity-based approach which adequately expresses the objective and the essence of our research. The article is based on the concepts of pedagogy by N.F. Talyzina and reveals the conceptual and instrumental components of implementing the activity-based approach as a productive means of achieving theoretical and practical consensus in the process of forming students’ cognitive activity. The materials of the article can be useful in modeling, designing and constructing a pedagogical concept aimed at achieving the balance between theoretical and practical components within the process of carrying out educational activity. © 2016 Chapaev et al

    Particle decay in false vacuum

    Full text link
    We revisit the problem of decay of a metastable vacuum induced by the presence of a particle. For the bosons of the `master field' the problem is solved in any number of dimensions in terms of the spontaneous decay rate of the false vacuum, while for a fermion we find a closed expression for the decay rate in (1+1) dimensions. It is shown that in the (1+1) dimensional case an infrared problem of one-loop correction to the decay rate of a boson is resolved due to a cancellation between soft modes of the field. We also find the boson decay rate in the `sine-Gordon staircase' model in the limits of strong and weak coupling.Comment: 19 pages, 2 figure

    Influence of boric anhydride upon the physical and chemical properties of ferrosilicon slag

    Get PDF
    The authors study the influence of boric anhydride upon the physical and chemical properties of slag in the manufacture of ferrosilicon. It is established that adding boric anhydride to the slag changes its refractory quality and its viscosity and eases pouring slag and metal. Slags with optimal composition and properties are described
    corecore