3,024 research outputs found
Gain in quantum cascade lasers and superlattices: A quantum transport theory
Gain in current-driven semiconductor heterostructure devices is calculated
within the theory of nonequilibrium Green functions. In order to treat the
nonequilibrium distribution self-consistently the full two-time structure of
the theory is employed without relying on any sort of Kadanoff-Baym Ansatz. The
results are independent of the choice of the electromagnetic field if the
variation of the self-energy is taken into account. Excellent quantitative
agreement is obtained with the experimental gain spectrum of a quantum cascade
laser. Calculations for semiconductor superlattices show that the simple 2-time
miniband transport model gives reliable results for large miniband widths at
room temperatureComment: 8 Pages, 4 Figures directly included, to appear in Physical Review
Tunneling through nanosystems: Combining broadening with many-particle states
We suggest a new approach for transport through finite systems based on the
Liouville equation. By working in a basis of many-particle states for the
finite system, Coulomb interactions are taken fully into account and correlated
transitions by up to two different contact states are included. This latter
extends standard rate equation models by including level-broadening effects.
The main result of the paper is a general expression for the elements of the
density matrix of the finite size system, which can be applied whenever the
eigenstates and the couplings to the leads are known. The approach works for
arbitrary bias and for temperatures above the Kondo temperature. We apply the
approach to standard models and good agreement with other methods in their
respective regime of validity is found.Comment: 9 pages, 5 figures included to tex
Theory of Transmission through disordered superlattices
We derive a theory for transmission through disordered finite superlattices
in which the interface roughness scattering is treated by disorder averaging.
This procedure permits efficient calculation of the transmission thr ough
samples with large cross-sections. These calculations can be performed
utilizing either the Keldysh or the Landauer-B\"uttiker transmission
formalisms, both of which yield identical equations. For energies close to the
lowest miniband, we demonstrate the accuracy of the computationally efficient
Wannier-function approximation. Our calculations indicate that the transmission
is strongly affected by interface roughness and that information about scale
and size of the imperfections can be obtained from transmission data.Comment: 12 pages, 6 Figures included into the text. Final version with minor
changes. Accepted by Physical Review
A hybrid model for chaotic front dynamics: From semiconductors to water tanks
We present a general method for studying front propagation in nonlinear
systems with a global constraint in the language of hybrid tank models. The
method is illustrated in the case of semiconductor superlattices, where the
dynamics of the electron accumulation and depletion fronts shows complex
spatio-temporal patterns, including chaos. We show that this behavior may be
elegantly explained by a tank model, for which analytical results on the
emergence of chaos are available. In particular, for the case of three tanks
the bifurcation scenario is characterized by a modified version of the
one-dimensional iterated tent-map.Comment: 4 pages, 4 figure
Quantum-mechanical wavepacket transport in quantum cascade laser structures
We present a viewpoint of the transport process in quantum cascade laser
structures in which spatial transport of charge through the structure is a
property of coherent quantum-mechanical wavefunctions. In contrast, scattering
processes redistribute particles in energy and momentum but do not directly
cause spatial motion of charge.Comment: 6 pages, 5 figures included in tex, to appear in Physical Review
Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices
We review the occurrence of electric-field domains in doped superlattices
within a discrete drift model. A complete analysis of the construction and
stability of stationary field profiles having two domains is carried out. As a
consequence, we can provide a simple analytical estimation for the doping
density above which stable stable domains occur. This bound may be useful for
the design of superlattices exhibiting self-sustained current oscillations.
Furthermore we explain why stable domains occur in superlattices in contrast to
the usual Gunn diode.Comment: Tex file and 3 postscript figure
Influence of interface roughness in quantum cascade lasers
We use a numerical model based on non-equilibrium Green's functions to investigate the influence of interface roughness (IFR) scattering in terahertz quantum cascade lasers. We confirm that IFR is an important phenomenon that affects both current and gain. The simulations indicate that IFR causes a leakage current that transfers electrons from the upper to the lower laser state. In certain cases, this current can greatly reduce gain. In addition, individual interfaces and their impact on the renormalized single particle energies are studied and shown to give both blue-and red-shifts of the gain spectrum. (C) 2015 AIP Publishing LLC
Sequential tunneling in doped superlattices: Fingerprints of impurity bands and photon-assisted tunneling
We report a combined theoretical and experimental study of electrical transport in weakly coupled doped superlattices. Our calculations exhibit negative differential conductivity at sufficiently high electric fields for all dopings. In low-doped samples the presence of impurity bands modifies the current-voltage characteristics substantially, and we find two different current peaks whose relative height changes with the electron temperature. These findings can explain the observation of different peaks in the current-voltage characteristics with and without external THz irradiation in low-doped samples. From our microscopic transport model we obtain quantitative agreement with the experimental current-voltage characteristics without using any fitting parameters. Both our experimental data and our theory show that absolute negative conductance persists over a wide range of frequencies of the free-electron laser source
Center of mass and relative motion in time dependent density functional theory
It is shown that the exchange-correlation part of the action functional
in time-dependent density functional theory , where
is the time-dependent density, is invariant under the
transformation to an accelerated frame of reference , where is an arbitrary
function of time. This invariance implies that the exchange-correlation
potential in the Kohn-Sham equation transforms in the following manner:
. Some of the
approximate formulas that have been proposed for satisfy this exact
transformation property, others do not. Those which transform in the correct
manner automatically satisfy the ``harmonic potential theorem", i.e. the
separation of the center of mass motion for a system of interacting particles
in the presence of a harmonic external potential. A general method to generate
functionals which possess the correct symmetry is proposed
- …