4,939 research outputs found

    Anomalous electronic Raman scattering in Na_xCoO_2 H_2O

    Get PDF
    Raman scattering experiments on Na_{x}CoO_2 yH_2O single crystals show a broad electronic continuum with a pronounced peak around 100 cm-1 and a cutoff at approximately 560 cm-1over a wide range of doping levels. The electronic Raman spectra in superconducting and non-superconducting samples are similar at room temperature, but evolve in markedly different ways with decreasing temperature. For superconducting samples, the low-energy spectral weight is depleted upon cooling below T* sim 150K, indicating a opening of a pseudogap that is not present in non-superconducting materials. Weak additional phonon modes observed below T* suggest that the pseudogap is associated with charge ordering.Comment: 5 pages, 4 figures, for further information see www.peter-lemmens.d

    Fermion Pairing Dynamics in the Relativistic Scalar Plasma

    Full text link
    Using many-body techniques we obtain the time-dependent Gaussian approximation for interacting fermion-scalar field models. This method is applied to an uniform system of relativistic spin-1/2 fermion field coupled, through a Yukawa term, to a scalar field in 3+1 dimensions, the so-called quantum scalar plasma model. The renormalization for the resulting Gaussian mean-field equations, both static and dynamical, are examined and initial conditions discussed. We also investigate solutions for the gap equation and show that the energy density has a single minimum.Comment: 21 pages, latex, 4 postscript figures, new sections, some literary changes, notation corrections, accepted for publication in Phys. Rev

    The Numerical Solution of Scalar Field for Nariai Case in 5D Ricci-flat SdS Black String Space with Polynomial Approximation

    Full text link
    As one exact candidate of the higher dimensional black hole, the 5D Ricci-flat Schwarzschild-de Sitter black string space presents something interesting. In this paper, we give a numerical solution to the real scalar field around the Nariai black hole by the polynomial approximation. Unlike the previous tangent approximation, this fitting function makes a perfect match in the leading intermediate region and gives a good description near both the event and the cosmological horizons. We can read from our results that the wave is close to a harmonic one with the tortoise coordinate. Furthermore, with the actual radial coordinate the waves pile up almost equally near the both horizons.Comment: 8 pages, 4 figure

    New Analytical Formula for Supercritical Accretion Flows

    Get PDF
    We examine a new family of global analytic solutions for optically thick accretion disks, which includes the supercritical accretion regime. We found that the ratio of the advection cooling rate, QadvQ_{\rm adv}, to the viscous heating rate, QvisQ_{\rm vis}, i.e., f=Qadv/Qvisf=Q_{\rm adv}/Q_{\rm vis}, can be represented by an analytical form dependent on the radius and the mass accretion rate. The new analytic solutions can be characterized by the photon-trapping radius, \rtrap, inside which the accretion time is less than the photon diffusion time in the vertical direction; the nature of the solutions changes significantly as this radius is crossed. Inside the trapping radius, ff approaches fr0f \propto r^0, which corresponds to the advection-dominated limit (f1f \sim 1), whereas outside the trapping radius, the radial dependence of ff changes to fr2f \propto r^{-2}, which corresponds to the radiative-cooling-dominated limit. The analytical formula for ff derived here smoothly connects these two regimes. The set of new analytic solutions reproduces well the global disk structure obtained by numerical integration over a wide range of mass accretion rates, including the supercritical accretion regime. In particular, the effective temperature profiles for our new solutions are in good agreement with those obtained from numerical solutions. Therefore, the new solutions will provide a useful tool not only for evaluating the observational properties of accretion flows, but also for investigating the mass evolution of black holes in the presence of supercritical accretion flows.Comment: 14 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Wave transmission, phonon localization and heat conduction of 1D Frenkel-Kontorova chain

    Full text link
    We study the transmission coefficient of a plane wave through a 1D finite quasi-periodic system -- the Frenkel-Kontorova (FK) model -- embedding in an infinite uniform harmonic chain. By varying the mass of atoms in the infinite uniform chain, we obtain the transmission coefficients for {\it all} eigenfrequencies. The phonon localization of the incommensurated FK chain is also studied in terms of the transmission coefficients and the Thouless exponents. Moreover, the heat conduction of Rubin-Greer-like model for FK chain at low temperature is calculated. It is found that the stationary heat flux J(N)NαJ(N)\sim N^{\alpha}, and α\alpha depends on the strength of the external potential.Comment: 15 pages in Revtex, 8 EPS figure

    Transport properties of ferromagnet/d-wave superconductor/ferromagnet double junctions

    Full text link
    We investigate transport properties of a trilayer made of a d-wave superconductor connected to two ferromagnetic electrodes. Using Keldysh formalism we show that crossed Andreev reflection and elastic cotunneling exist also with d-wave superconductors. Their properties are controlled by the existence of zero energy states due to the anisotropy of the d-wave pair potential.Comment: 16 pages, 4 figures, revised versio

    Emergent quantum confinement at topological insulator surfaces

    Full text link
    Bismuth-chalchogenides are model examples of three-dimensional topological insulators. Their ideal bulk-truncated surface hosts a single spin-helical surface state, which is the simplest possible surface electronic structure allowed by their non-trivial Z2\mathbb{Z}_2 topology. They are therefore widely regarded ideal templates to realize the predicted exotic phenomena and applications of this topological surface state. However, real surfaces of such compounds, even if kept in ultra-high vacuum, rapidly develop a much more complex electronic structure whose origin and properties have proved controversial. Here, we demonstrate that a conceptually simple model, implementing a semiconductor-like band bending in a parameter-free tight-binding supercell calculation, can quantitatively explain the entire measured hierarchy of electronic states. In combination with circular dichroism in angle-resolved photoemission (ARPES) experiments, we further uncover a rich three-dimensional spin texture of this surface electronic system, resulting from the non-trivial topology of the bulk band structure. Moreover, our study reveals how the full surface-bulk connectivity in topological insulators is modified by quantum confinement.Comment: 9 pages, including supplementary information, 4+4 figures. A high resolution version is available at http://www.st-andrews.ac.uk/~pdk6/pub_files/TI_quant_conf_high_res.pd

    Weighted ergodic theorems for Banach-Kantorovich lattice Lp(^,μ^)L_{p}(\hat{\nabla},\hat{\mu})

    Full text link
    In the present paper we prove weighted ergodic theorems and multiparameter weighted ergodic theorems for positive contractions acting on Lp(^,μ^)L_p(\hat{\nabla},\hat{\mu}). Our main tool is the use of methods of measurable bundles of Banach-Kantorovich lattices.Comment: 11 page

    The Minimum Stellar Mass in Early Galaxies

    Full text link
    The conditions for the fragmentation of the baryonic component during merging of dark matter halos in the early Universe are studied. We assume that the baryonic component undergoes a shock compression. The characteristic masses of protostellar molecular clouds and the minimum masses of protostars formed in these clouds decrease with increasing halo mass. This may indicate that the initial stellar mass function in more massive galaxies was shifted towards lower masses during the initial stages of their formation. This would result in an increase of the number of stars per unit halo mass, i.e., the efficiency of star formation.Comment: 18 pages, 7 figure
    corecore