4,939 research outputs found
Anomalous electronic Raman scattering in Na_xCoO_2 H_2O
Raman scattering experiments on Na_{x}CoO_2 yH_2O single crystals show a
broad electronic continuum with a pronounced peak around 100 cm-1 and a cutoff
at approximately 560 cm-1over a wide range of doping levels. The electronic
Raman spectra in superconducting and non-superconducting samples are similar at
room temperature, but evolve in markedly different ways with decreasing
temperature. For superconducting samples, the low-energy spectral weight is
depleted upon cooling below T* sim 150K, indicating a opening of a pseudogap
that is not present in non-superconducting materials. Weak additional phonon
modes observed below T* suggest that the pseudogap is associated with charge
ordering.Comment: 5 pages, 4 figures, for further information see www.peter-lemmens.d
Fermion Pairing Dynamics in the Relativistic Scalar Plasma
Using many-body techniques we obtain the time-dependent Gaussian
approximation for interacting fermion-scalar field models. This method is
applied to an uniform system of relativistic spin-1/2 fermion field coupled,
through a Yukawa term, to a scalar field in 3+1 dimensions, the so-called
quantum scalar plasma model. The renormalization for the resulting Gaussian
mean-field equations, both static and dynamical, are examined and initial
conditions discussed. We also investigate solutions for the gap equation and
show that the energy density has a single minimum.Comment: 21 pages, latex, 4 postscript figures, new sections, some literary
changes, notation corrections, accepted for publication in Phys. Rev
The Numerical Solution of Scalar Field for Nariai Case in 5D Ricci-flat SdS Black String Space with Polynomial Approximation
As one exact candidate of the higher dimensional black hole, the 5D
Ricci-flat Schwarzschild-de Sitter black string space presents something
interesting. In this paper, we give a numerical solution to the real scalar
field around the Nariai black hole by the polynomial approximation. Unlike the
previous tangent approximation, this fitting function makes a perfect match in
the leading intermediate region and gives a good description near both the
event and the cosmological horizons. We can read from our results that the wave
is close to a harmonic one with the tortoise coordinate. Furthermore, with the
actual radial coordinate the waves pile up almost equally near the both
horizons.Comment: 8 pages, 4 figure
New Analytical Formula for Supercritical Accretion Flows
We examine a new family of global analytic solutions for optically thick
accretion disks, which includes the supercritical accretion regime. We found
that the ratio of the advection cooling rate, , to the viscous
heating rate, , i.e., , can be
represented by an analytical form dependent on the radius and the mass
accretion rate. The new analytic solutions can be characterized by the
photon-trapping radius, \rtrap, inside which the accretion time is less than
the photon diffusion time in the vertical direction; the nature of the
solutions changes significantly as this radius is crossed. Inside the trapping
radius,
approaches , which corresponds to the advection-dominated
limit (), whereas outside the trapping radius, the radial dependence
of changes to , which corresponds to the
radiative-cooling-dominated limit. The analytical formula for derived here
smoothly connects these two regimes. The set of new analytic solutions
reproduces well the global disk structure obtained by numerical integration
over a wide range of mass accretion rates, including the supercritical
accretion regime. In particular, the effective temperature profiles for our new
solutions are in good agreement with those obtained from numerical solutions.
Therefore, the new solutions will provide a useful tool not only for evaluating
the observational properties of accretion flows, but also for investigating the
mass evolution of black holes in the presence of supercritical accretion flows.Comment: 14 pages, 7 figures, accepted for publication in the Astrophysical
Journa
Wave transmission, phonon localization and heat conduction of 1D Frenkel-Kontorova chain
We study the transmission coefficient of a plane wave through a 1D finite
quasi-periodic system -- the Frenkel-Kontorova (FK) model -- embedding in an
infinite uniform harmonic chain. By varying the mass of atoms in the infinite
uniform chain, we obtain the transmission coefficients for {\it all}
eigenfrequencies. The phonon localization of the incommensurated FK chain is
also studied in terms of the transmission coefficients and the Thouless
exponents. Moreover, the heat conduction of Rubin-Greer-like model for FK chain
at low temperature is calculated. It is found that the stationary heat flux
, and depends on the strength of the external
potential.Comment: 15 pages in Revtex, 8 EPS figure
Transport properties of ferromagnet/d-wave superconductor/ferromagnet double junctions
We investigate transport properties of a trilayer made of a d-wave
superconductor connected to two ferromagnetic electrodes. Using Keldysh
formalism we show that crossed Andreev reflection and elastic cotunneling exist
also with d-wave superconductors. Their properties are controlled by the
existence of zero energy states due to the anisotropy of the d-wave pair
potential.Comment: 16 pages, 4 figures, revised versio
Emergent quantum confinement at topological insulator surfaces
Bismuth-chalchogenides are model examples of three-dimensional topological
insulators. Their ideal bulk-truncated surface hosts a single spin-helical
surface state, which is the simplest possible surface electronic structure
allowed by their non-trivial topology. They are therefore widely
regarded ideal templates to realize the predicted exotic phenomena and
applications of this topological surface state. However, real surfaces of such
compounds, even if kept in ultra-high vacuum, rapidly develop a much more
complex electronic structure whose origin and properties have proved
controversial. Here, we demonstrate that a conceptually simple model,
implementing a semiconductor-like band bending in a parameter-free
tight-binding supercell calculation, can quantitatively explain the entire
measured hierarchy of electronic states. In combination with circular dichroism
in angle-resolved photoemission (ARPES) experiments, we further uncover a rich
three-dimensional spin texture of this surface electronic system, resulting
from the non-trivial topology of the bulk band structure. Moreover, our study
reveals how the full surface-bulk connectivity in topological insulators is
modified by quantum confinement.Comment: 9 pages, including supplementary information, 4+4 figures. A high
resolution version is available at
http://www.st-andrews.ac.uk/~pdk6/pub_files/TI_quant_conf_high_res.pd
Weighted ergodic theorems for Banach-Kantorovich lattice
In the present paper we prove weighted ergodic theorems and multiparameter
weighted ergodic theorems for positive contractions acting on
. Our main tool is the use of methods of
measurable bundles of Banach-Kantorovich lattices.Comment: 11 page
The Minimum Stellar Mass in Early Galaxies
The conditions for the fragmentation of the baryonic component during merging
of dark matter halos in the early Universe are studied. We assume that the
baryonic component undergoes a shock compression. The characteristic masses of
protostellar molecular clouds and the minimum masses of protostars formed in
these clouds decrease with increasing halo mass. This may indicate that the
initial stellar mass function in more massive galaxies was shifted towards
lower masses during the initial stages of their formation. This would result in
an increase of the number of stars per unit halo mass, i.e., the efficiency of
star formation.Comment: 18 pages, 7 figure
- …
