9,832 research outputs found

    Theory of resonant spin Hall effect

    Full text link
    A biref review is presented on resonant spin Hall effect, where a tiny external electric field induces a saturated spin Hall current in a 2-dimensional electron or hole gas in a perpendicular magnetic field. The phenomenon is attributted to the energy level crossing associated with the spin-orbit coupling and the Zeeman splitting. We summarize recent theoretical development of the effect in various systems and discuss possible experiments to observe the effect.Comment: 5 pages with 1 figure

    Enhancement of the anomalous Hall effect and spin glass behavior in the bilayered manganite La(2-2x)Sr(1+2x)Mn2O7

    Full text link
    The Hall resistivity and magnetization have been investigated in the ferromagnetic state of the bilayered manganite La(2-2x)Sr(1+2x)Mn2O7 (x=0.36). The Hall resistivity shows an increase in both the ordinary and anomalous Hall coefficients at low temperatures below 50K, a region in which experimental evidence for the spin glass state has been found in a low magnetic field of 1mT. The origin of the anomalous behavior of the Hall resistivity relevant to magnetic states may lie in the intrinsic microscopic inhomogeneity in a quasi-two-dimensional electron system.Comment: 7 pages, 4 figures, Solid State Communications (in press

    Interplay between carrier and impurity concentrations in annealed Ga1x_{1-x}Mnx_{x}As intrinsic anomalous Hall Effect

    Get PDF
    Investigating the scaling behavior of annealed Ga1x_{1-x}Mnx_{x}As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and extrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in TC_{C}. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.Comment: 4 pages, 5 figure

    A Detailed Analysis of One-loop Neutrino Masses from the Generic Supersymmetric Standard Model

    Full text link
    In the generic supersymmetric standard model which had no global symmetry enforced by hand, lepton number violation is a natural consequence. Supersymmetry, hence, can be considered the source of experimentally demanded beyond standard model properties for the neutrinos. With an efficient formulation of the model, we perform a comprehensive detailed analysis of all one-loop contributions to neutrino masses.Comment: 27 pages Revtex, no figur

    Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient

    Get PDF
    We report on the anomalous Hall coefficient and longitudinal resistivity scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055). As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing temperature, we find n ~ 2 to be consistent with recent theories on the intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing temperatures far above the optimum, we note n > 3, similar behavior to certain inhomogeneous systems. This observation of atypical behavior agrees well with characteristic features attributable to spherical resonance from metallic inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure

    High Resolution X-Ray Imaging of the Center of IC342

    Get PDF
    We presented the result of a high resolution (FWHM~0.5'') 12 ks Chandra HRC-I observation of the starburst galaxy IC342 taken on 2 April 2006. We identified 23 X-ray sources within the central 30' x 30' region of IC342. Our HRC-I observation resolved the historical Ultraluminous X-ray sources (ULX), X3, near the nucleus into 2 sources, namely C12 and C13, for the first time. The brighter source C12, with L(0.08-10keV)=(6.66\pm0.45)\times10^{38}ergs^-1, was spatially extended (~82 pc x 127 pc). From the astrometric registration of the X-ray image, C12 was at R.A.=03h:46m:48.43s, decl.=+68d05m47.45s, and was closer to the nucleus than C13. Thus we concluded that source was not an ULX and must instead be associated with the nucleus. The fainter source C13, with L(0.08-10keV)=(5.1\pm1.4) x 10^{37}ergs^-1 was consistent with a point source and located $6.51'' at P.A. 240 degree of C12. We also analyzed astrometrically corrected optical Hubble Space Telescope and radio Very Large Array images, a comparison with the X-ray image showed similarities in their morphologies. Regions of star formation within the central region of IC342 were clearly visible in HST H alpha image and this was the region where 3 optical star clusters and correspondingly our detected X-ray source C12 were observed. We found that a predicted X-ray emission from starburst was very close to the observed X-ray luminosity of C12, suggesting that nuclear X-ray emission in IC342 was dominated by starburst. Furthermore, we discussed the possibility of AGN in the nucleus of IC342. Although our data was not enough to give a firm existence of an AGN, it could not be discarded.Comment: 29 page, 8 figures, accepted by Ap

    Effect of a Zn impurity on T_c and its implication to pairing symmetry in LaFeAsO1x_{1-x}Fx_x

    Full text link
    The effect of non-magnetic Zn impurity on superconductivity in LaFe1y_{1-y}Zny_yAsO1x_{1-x}Fx_x system is studied systematically. In the presence of Zn impurity, the superconducting transition temperature increases in the under-doped regime, remains unchanged in the optimally doped regime, and is severely suppressed in the over-doped regime. Our results suggest a switch of the symmetry of the superconducting order parameters from a ss-wave to s±s_{\pm} or dd-wave states as the charge carrier doping increases in FeAs-based superconductors.Comment: 4 pages, 4 figures. Format changed and a few revisons mad

    U(2) and Maximal Mixing of nu_{mu}

    Full text link
    A U(2) flavor symmetry can successfully describe the charged fermion masses and mixings, and supress SUSY FCNC processes, making it a viable candidate for a theory of flavor. We show that a direct application of this U(2) flavor symmetry automatically predicts a mixing of 45 degrees for nu_mu to nu_s, where nu_s is a light, right-handed state. The introduction of an additional flavor symmetry acting on the right-handed neutrinos makes the model phenomenologically viable, explaining the solar neutrino deficit as well as the atmospheric neutrino anomaly, while giving a potential hot dark matter candidate and retaining the theory's predictivity in the quark sector.Comment: 20 pages, 1 figur
    corecore