106,994 research outputs found

    Web-based haptic applications for blind people to create virtual graphs

    Get PDF
    Haptic technology has great potentials in many applications. This paper introduces our work on delivery haptic information via the Web. A multimodal tool has been developed to allow blind people to create virtual graphs independently. Multimodal interactions in the process of graph creation and exploration are provided by using a low-cost haptic device, the Logitech WingMan Force Feedback Mouse, and Web audio. The Web-based tool also provides blind people with the convenience of receiving information at home. In this paper, we present the development of the tool and evaluation results. Discussions on the issues related to the design of similar Web-based haptic applications are also given

    Comment on "Spectroscopic Evidence for Multiple Order Parameter Components in the Heavy Fermion Superconductor CeCoIn5_5"

    Full text link
    Recently, Rourke et al. reported point-contact spectroscopy results on the heavy-fermion superconductor CeCoIn5_5 [1]. They obtained conductance spectra on the c-axis surfaces of CeCoIn5_5 single crystals. Their major claims are two-fold: CeCoIn5_5 has i) d-wave pairing symmetry and ii) two coexisting order parameter components. In this Comment, we show that these claims are not warranted by the data presented. [1] Rourke et al., Phys. Rev. Lett. 94, 107005 (2005).Comment: accepted for publication in Phys. Rev. Lett., final for

    Localization of electric field distribution in graded core-shell metamaterials

    Full text link
    The local electric field distribution has been investigated in a core-shell cylindrical metamaterial structure under the illumination of a uniform incident optical field. The structure consists of a homogeneous dielectric core, a shell of graded metal-dielectric metamaterial, embedded in a uniform matrix. In the quasi-static limit, the permittivity of the metamaterial is given by the graded Drude model. The local electric potentials and hence the electric fields have been derived exactly and analytically in terms of hyper-geometric functions. Our results showed that the peak of the electric field inside the cylindrical shell can be confined in a desired position by varying the frequency of the optical field and the parameters of the graded profiles. Thus, by fabricating graded metamaterials, it is possible to control electric field distribution spatially. We offer an intuitive explanation for the gradation-controlled electric field distribution

    On the efficiency of estimating penetrating rank on large graphs

    Get PDF
    P-Rank (Penetrating Rank) has been suggested as a useful measure of structural similarity that takes account of both incoming and outgoing edges in ubiquitous networks. Existing work often utilizes memoization to compute P-Rank similarity in an iterative fashion, which requires cubic time in the worst case. Besides, previous methods mainly focus on the deterministic computation of P-Rank, but lack the probabilistic framework that scales well for large graphs. In this paper, we propose two efficient algorithms for computing P-Rank on large graphs. The first observation is that a large body of objects in a real graph usually share similar neighborhood structures. By merging such objects with an explicit low-rank factorization, we devise a deterministic algorithm to compute P-Rank in quadratic time. The second observation is that by converting the iterative form of P-Rank into a matrix power series form, we can leverage the random sampling approach to probabilistically compute P-Rank in linear time with provable accuracy guarantees. The empirical results on both real and synthetic datasets show that our approaches achieve high time efficiency with controlled error and outperform the baseline algorithms by at least one order of magnitude

    Dielectric behavior of oblate spheroidal particles: Application to erythrocytes suspensions

    Full text link
    We have investigated the effect of particle shape on the eletrorotation (ER) spectrum of living cells suspensions. In particular, we consider coated oblate spheroidal particles and present a theoretical study of ER based on the spectral representation theory. Analytic expressions for the characteristic frequency as well as the dispersion strength can be obtained, thus simplifying the fitting of experimental data on oblate spheroidal cells that abound in the literature. From the theoretical analysis, we find that the cell shape, coating as well as material parameters can change the ER spectrum. We demonstrate good agreement between our theoretical predictions and experimental data on human erthrocytes suspensions.Comment: RevTex; 5 eps figure

    Many-body dipole-induced dipole model for electrorheological fluids

    Full text link
    Theoretical investigations on electrorheological (ER) fluids usually rely on computer simulations. An initial approach for these studies would be the point-dipole (PD) approximation, which is known to err considerably when the particles approach and finally touch due to many-body and multipolar interactions. Thus various work attempted to go beyond the PD model. Being beyond the PD model, previous attempts have been restricted to either local-field effects only or multipolar effects only, but not both. For instance, we recently proposed a dipole-induced-dipole (DID) model which is shown to be both more accurate than the PD model and easy to use. This work is necessary because the many-body (local-field) effect is included to put forth the many-body DID model. The results show that the multipolar interactions can indeed be dominant over the dipole interaction, while the local-field effect may yield an important correction.Comment: RevTeX, 3 eps figure

    Nonlinear ac responses of electro-magnetorheological fluids

    Full text link
    We apply a Langevin model to investigate the nonlinear ac responses of electro-magnetorheological (ERMR) fluids under the application of two crossed dc magnetic (z axis) and electric (x axis) fields and a probing ac sinusoidal magnetic field. We focus on the influence of the magnetic fields which can yield nonlinear behaviors inside the system due to the particles with a permanent magnetic dipole moment. Based on a perturbation approach, we extract the harmonics of the magnetic field and orientational magnetization analytically. To this end, we find that the harmonics are sensitive to the degree of anisotropy of the structure as well as the field frequency. Thus, it is possible to real-time monitor the structure transformation of ERMR fluids by detecting the nonlinear ac responses.Comment: 21 pages, 4 figure
    • …
    corecore