7,296 research outputs found

    Different Ways of Reading, or Just Making the Right Noises?

    Get PDF
    What does reading look like? Can learning to read be reduced to the acquisition of a set of isolable skills, or proficiency in reading be equated with the independence of the solitary, silent reader of prose fiction? These conceptions of reading and reading development, which figure strongly in educational policy, may appear to be simple common sense. But both ethnographic data and evidence from literary texts suggest that such paradigms offer, at most, a partial and ahistorical picture of reading. An important dimension, neglected in the dominant paradigms, is the irreducibly social quality of reading practices

    Hadron production in Au-Au collisions at RHIC

    Get PDF
    We present an analysis of particle production yields measured in central Au-Au collisions at RHIC in the framework of the statistical thermal model. We demonstrate that the model extrapolated from previous analyses at SPS and AGS energy is in good agreement with the available experimental data at s=130\sqrt s=130 GeV implying a high degree of chemical equilibration. Performing a Ļ‡2\chi^2 fit to the data, the range of thermal parameters at chemical freezeout is determined. At present, the best agreement of the model and the data is obtained with the baryon chemical potential Ī¼Bā‰ƒ46Ā±5\mu_B\simeq 46\pm 5 MeV and temperature Tā‰ƒ174Ā±7T\simeq 174\pm 7 MeV. More ratios, such as multistrange baryon to meson, would be required to further constrain the chemical freezeout conditions. Extrapolating thermal parameters to higher energy, the predictions of the model for particle production in Au-Au reactions at s=200\sqrt s=200 GeV are also given.Comment: Final version, minor changes to text and figures. To appear in Phys. Lett.

    Group behavior among model bacteria influences particulate carbon remineralization depths

    Get PDF
    Organic particles sinking from the sunlit surface are oases of food for heterotrophic bacteria living in the deep ocean. Particle-attached bacteria need to solubilize particles, so they produce exoenzymes that cleave bonds to make molecules small enough to be transported through bacterial cell walls. Releasing exoenzymes, which have an energetic cost, to the external environment is risky because there is no guarantee that products of exoenzyme activity, called hydrolysate, will diffuse to the particle-attached bacterium that produced the exoenzymes. Strategies used by particle-attached bacteria to counteract diffusive losses of exoenzymes and hydrolysate are investigated in a water column model. We find that production of exoenzymes by particle-attached bacteria is only energetically worthwhile at high bacterial abundances. Quorum sensing provides the means to determine local abundances, and thus the model results support lab and field studies which found that particle-attached bacteria have the ability to use quorum sensing. Additional model results are that particle-attached bacterial production is sensitive to diffusion of hydrolysate from the particle and is enhanced by as much as 15 times when diffusion of exoenzymes and hydrolysate from particles is reduced by barriers of biofilms and particle-attached bacteria. Bacterial colonization rates and activities on particles in both the euphotic and mesopelagic zones impact remineralization length scales. Shoaling or deepening of the remineralization depth has been shown to exert significant influence on the residence time and concentration of carbon in the atmosphere and ocean. By linking variability in remineralization depths to mechanisms governing bacterial colonization of particles and group coordination of exoenzyme production using a model, we quantitatively connect microscale bacteria-particle interactions to the carbon cycle and provide new insights for future observations

    Van Vleck excitons in Ca2RuO4

    Get PDF
    A framework is presented for modeling and understanding magnetic excitations in localized, intermediate coupling magnets where the interplay between spin-orbit coupling, magnetic exchange, and crystal field effects are known to create a complex landscape of unconventional magnetic behaviors and ground states. A spin-orbit exciton approach for modeling these excitations is developed based upon a Hamiltonian which explicitly incorporates single-ion crystalline electric field and spin exchange terms. This framework is then leveraged to understand a canonical Van Vleck jeff=0j\rm{_{eff}}=0 singlet ground state whose excitations are coupled spin and crystalline electric field levels. Specifically, the anomalous Higgs mode [Jain et al. Nat. Phys. 13, 633 (2017)], spin-waves [S. Kunkem\"{o}ller et al. Phys. Rev. Lett. 115, 247201 (2015)], and orbital excitations [L. Das et al. Phys. Rev. X 8, 011048 (2018)] in the multiorbital Mott insulator Ca2_2RuO4_4 are captured and good agreement is found with previous neutron and inelastic x-ray spectroscopic measurements. Furthermore, our results illustrate how a crystalline electric field-induced singlet ground state can support coherent longitudinal, or amplitude excitations, and transverse wavelike dynamics. We use this description to discuss mechanisms for accessing a nearby critical point.Comment: 18 pages, 8 figure

    Palaeobiology, ecology, and distribution of stromatoporoid faunas in biostromes of the mid-Ludlow of Gotland

    Get PDF
    Six well exposed midāˆ’Ludlow stromatoporoidāˆ’dominated reef biostromes in four localities from the Hemse Group in southeastern Gotland, Sweden comprise a stromatoporoid assemblage dominated by four species; Clathrodictyon mohicanum, ā€œStromatoporaā€ bekkeri, Plectostroma scaniense, and Lophiostroma schmidtii. All biostromes investigated in this area (of approximately 30 km2) are interpreted to belong to a single faunal assemblage forming a dense accumulation of fossils that is probably the best exposed stromatoporoidāˆ’rich deposit of the Silurian. The results from this comprehensive study strengthen earlier interpretations of a combination of genetic and environmental control on growthāˆ’forms of the stromatoporoids. Growth styles are similar for stromatoporoids in all six biostromes. Differences in biostrome fabric are due to variations in the degree of disturbance by storms. The uniformity of facies and the widespread lowāˆ’diversity fauna support the view that palaeoenvironmental conditions were similar across the area where these biostromes crop out, and promoted the extraordinary growth of stromatoporoids in this shallow shelf area

    Competing orders in PZN-xPT and PMN-xPT relaxor ferroelectrics

    Full text link
    Neutron and x-ray scattering studies on relaxor ferroelectric systems Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3 (PZN), Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_3 (PMN), and their solid solutions with PbTiO3_3 (PT) have shown that inhomogeneities and disorder play important roles in the materials properties. Although a long-range polar order can be established at low temperature - sometimes with the help of an external electric field; short-range local structures called the ``polar nano-regions'' (PNR) still persist. Both the bulk structure and the PNR have been studied in details. The coexistence and competition of long- and short-range polar orders and how they affect the structural and dynamical properties of relaxor materials are discussed.Comment: Article submitted for JPSJ Special Topics (Novel States of Matter Induced by Frustration
    • ā€¦
    corecore