997 research outputs found

    Magnetic-Field-Induced Hybridization of Electron Subbands in a Coupled Double Quantum Well

    Full text link
    We employ a magnetocapacitance technique to study the spectrum of the soft two-subband (or double-layer) electron system in a parabolic quantum well with a narrow tunnel barrier in the centre. In this system unbalanced by gate depletion, at temperatures T\agt 30 mK we observe two sets of quantum oscillations: one originates from the upper electron subband in the closer-to-the-gate part of the well and the other indicates the existence of common gaps in the spectrum at integer fillings. For the lowest filling factors ν=1\nu=1 and ν=2\nu=2, both the common gap presence down to the point of one- to two-subband transition and their non-trivial magnetic field dependences point to magnetic-field-induced hybridization of electron subbands.Comment: Major changes, added one more figure, the latest version to be published in JETP Let

    Quantum Hall effect in single wide quantum wells

    Full text link
    We study the quantum Hall states in the lowest Landau level for a single wide quantum well. Due to a separation of charges to opposite sides of the well, a single wide well can be modelled as an effective two level system. We provide numerical evidence of the existence of a phase transition from an incompressible to a compressible state as the electron density is increased for specific well width. Our numerical results show a critical electron density which depends on well width, beyond which a transition incompressible double layer quantum Hall state to a mono-layer compressible state occurs. We also calculate the related phase boundary corresponding to destruction of the collective mode energy gap. We show that the effective tunneling term and the interlayer separation are both renormalised by the strong magnetic field. We also exploite the local density functional techniques in the presence of strong magnetic field at ν=1\nu=1 to calculate renormalized ΔSAS\Delta_{SAS}. The numerical results shows good agreement between many-body calculations and local density functional techniques in the presence of a strong magnetic field at ν=1\nu=1. we also discuss implications of this work on the ν=1/2\nu=1/2 incompressible state observed in SWQW.Comment: 30 pages, 7 figures (figures are not included

    Gravitational Waves from Phase-Transition Induced Collapses of Neutron Stars

    Get PDF
    We study the gravitational wave signals emitted from phase-transition induced collapses of rapidly rotating neutron stars to strange stars by performing 3D numerical simulations. Our preliminary results suggest that the complete conversion of neutron stars to strange stars would occur within a fraction of millisecond. We also find that the gravitational waves generated from the collapse process may be detectable by the advanced LIGO for reasonable source distance. In addition, the study such gravitational wave signals would put useful constraint on the parameters of QCD

    The Collision of Two Black Holes

    Full text link
    We study the head-on collision of two equal mass, nonrotating black holes. We consider a range of cases from holes surrounded by a common horizon to holes initially separated by about 20M20M, where MM is the mass of each hole. We determine the waveforms and energies radiated for both the â„“=2\ell = 2 and â„“=4\ell=4 waves resulting from the collision. In all cases studied the normal modes of the final black hole dominate the spectrum. We also estimate analytically the total gravitational radiation emitted, taking into account the tidal heating of horizons using the membrane paradigm, and other effects. For the first time we are able to compare analytic calculations, black hole perturbation theory, and strong field, nonlinear numerical calculations for this problem, and we find excellent agreement.Comment: 14 pages, 93-

    Half-Integral Spin-Singlet Quantum Hall Effect

    Full text link
    We provide numerical evidence that the ground state of a short range interaction model at ν=1/2\nu=1/2 is incompressible and spin-singlet for a wide range of repulsive interactions. Furthermore it is accurately described by a trial wave function studied earlier. For the Coulomb interaction we find that this wave function provides a good description of the lowest lying spin-singlet state, and propose that fractional quantum Hall effect would occur at ν=1/2\nu=1/2 if this state became the global ground state.Comment: Latex 13 pages, 3 figures upon reques

    Wigner Crystals Phases in Bilayer Quantum Hall Systems

    Full text link
    (This is a substantially shortened version of the original abstract:) The Wigner crystal phase diagram of the bilayer systems have been studied using variational methods. Five crystal phases are obtained. As the layer spacing increases, the system will undergo a sequence of phase transitions. A common feature of most bilayer Wigner crystals is that they have mixed (pseudo-spin) ferromagnetic and antiferromagnetic order.Comment: 19 figures. Figures will be provided upon request. Submitted in PRB in Nov 94

    Shifting the quantum Hall plateau level in a double layer electron system

    Full text link
    We study the plateaux of the integer quantum Hall resistance in a bilayer electron system in tilted magnetic fields. In a narrow range of tilt angles and at certain magnetic fields, the plateau level deviates appreciably from the quantized value with no dissipative transport emerging. A qualitative account of the effect is given in terms of decoupling of the edge states corresponding to different electron layers/Landau levels.Comment: 3 pages, 3 figures include

    Hysteresis and the dynamic phase transition in thin ferromagnetic films

    Full text link
    Hysteresis and the non-equilibrium dynamic phase transition in thin magnetic films subject to an oscillatory external field have been studied by Monte Carlo simulation. The model under investigation is a classical Heisenberg spin system with a bilinear exchange anisotropy in a planar thin film geometry with competing surface fields. The film exhibits a non-equilibrium phase transition between dynamically ordered and dynamically disordered phases characterized by a critical temperature Tcd, whose location of is determined by the amplitude H0 and frequency w of the applied oscillatory field. In the presence of competing surface fields the critical temperature of the ferromagnetic-paramagnetic transition for the film is suppressed from the bulk system value, Tc, to the interface localization-delocalization temperature Tci. The simulations show that in general Tcd < Tci for the model film. The profile of the time-dependent layer magnetization across the film shows that the dynamically ordered and dynamically disordered phases coexist within the film for T < Tcd. In the presence of competing surface fields, the dynamically ordered phase is localized at one surface of the film.Comment: PDF file, 21 pages including 8 figure pages; added references,typos added; to be published in PR

    Examining the Relations among Student Motivation, Engagement, and Retention in a MOOC: A Structural Equation Modeling Approach

    Get PDF
    Students who are enrolled in MOOCs tend to have different motivational patterns than fee-paying college students. A majority of MOOC students demonstrate characteristics akin more to "tourists" than formal learners. As a consequence, MOOC studentsΓÇÖ completion rate is usually very low. The current study examines the relations among student motivation, engagement, and retention using structural equation modeling and data from a Penn State University MOOC. Three distinct types of motivation are examined: intrinsic motivation, extrinsic motivation, and social motivation. Two main hypotheses are tested: (a) motivation predicts student course engagement; and (b) student engagement predicts their retention in the course. The results show that motivation is significantly predictive of student course engagement. Furthermore, engagement is a strong predictor of retention. The findings suggest that promoting student motivation and monitoring individual studentsΓÇÖ online activities might improve course retention

    Quantum Hall Ferromagnets

    Full text link
    It is pointed out recently that the ν=1/m\nu=1/m quantum Hall states in bilayer systems behave like easy plane quantum ferromagnets. We study the magnetotransport of these systems using their ``ferromagnetic" properties and a novel spin-charge relation of their excitations. The general transport is a combination of the ususal Hall transport and a time dependent transport with quantizedquantized time average. The latter is due to a phase slippage process in spacetimespacetime and is characterized by two topological constants. (Figures will be provided upon requests).Comment: 4 pages, Revtex, Ohio State Universit
    • …
    corecore