4,218 research outputs found

    Bulk and wetting phenomena in a colloidal mixture of hard spheres and platelets

    Full text link
    Density functional theory is used to study binary colloidal fluids consisting of hard spheres and thin platelets in their bulk and near a planar hard wall. This system exhibits liquid-liquid coexistence of a phase that is rich in spheres (poor in platelets) and a phase that is poor in spheres (rich in platelets). For the mixture near a planar hard wall, we find that the phase rich in spheres wets the wall completely upon approaching the liquid demixing binodal from the sphere-poor phase, provided the concentration of the platelets is smaller than a threshold value which marks a first-order wetting transition at coexistence. No layering transitions are found in contrast to recent studies on binary mixtures of spheres and non-adsorbing polymers or thin hard rods.Comment: 6 pages, 4 figure

    Role of Metastable States in Phase Ordering Dynamics

    Full text link
    We show that the rate of separation of two phases of different densities (e.g. gas and solid) can be radically altered by the presence of a metastable intermediate phase (e.g. liquid). Within a Cahn-Hilliard theory we study the growth in one dimension of a solid droplet from a supersaturated gas. A moving interface between solid and gas phases (say) can, for sufficient (transient) supersaturation, unbind into two interfaces separated by a slab of metastable liquid phase. We investigate the criteria for unbinding, and show that it may strongly impede the growth of the solid phase.Comment: 4 pages, Latex, Revtex, epsf. Updated two reference

    Radio Astronomy

    Get PDF
    Contains reports on one research project.National Aeronautics and Space Administration (Contract NAS5-21980

    A cluster mode-coupling approach to weak gelation in attractive colloids

    Full text link
    Mode-coupling theory (MCT) predicts arrest of colloids in terms of their volume fraction, and the range and depth of the interparticle attraction. We discuss how effective values of these parameters evolve under cluster aggregation. We argue that weak gelation in colloids can be idealized as a two-stage ergodicity breaking: first at short scales (approximated by the bare MCT) and then at larger scales (governed by MCT applied to clusters). The competition between arrest and phase separation is considered in relation to recent experiments. We predict a long-lived `semi-ergodic' phase of mobile clusters, showing logarithmic relaxation close to the gel line.Comment: 4 pages, 3 figure

    Employers\u27 expectations of the performance of construction graduates

    Full text link

    Radio Astronomy

    Get PDF
    Contains reports on two research projecst.California Institute of Technology Contract 952568Sloan Fund for Basic Research (M.I. T. Grant 241
    • …
    corecore