196 research outputs found

    Slip statistics of dislocation avalanches under different loading modes

    Get PDF
    Slowly compressed microcrystals deform via intermittent slip events, observed as displacement jumps or stress drops. Experiments often use one of two loading modes: an increasing applied stress (stress driven, soft), or a constant strain rate (strain driven, hard). In this work we experimentally test the influence of the deformation loading conditions on the scaling behavior of slip events. It is found that these common deformation modes strongly affect time series properties, but not the scaling behavior of the slip statistics when analyzed with a mean-field model. With increasing plastic strain, the slip events are found to be smaller and more frequent when strain driven, and the slip-size distributions obtained for both drives collapse onto the same scaling function with the same exponents. The experimental results agree with the predictions of the used mean-field model, linking the slip behavior under different loading modes

    Ground State Electromagnetic Moments of <sup>37</sup>Ca

    No full text
    The hyperfine coupling constants of neutron deficient 37^{37}Ca were deduced from the atomic hyperfine spectrum of the 4s 2S1/24s~^2S_{1/2} \leftrightarrow 4p 2P3/24p~^2P_{3/2} transition in Ca II, measured using the collinear laser spectroscopy technique. The ground-state magnetic-dipole and spectroscopic electric-quadrupole moments were determined for the first time as μ=+0.7453(72)μN\mu = +0.7453(72) \mu_N and Q=15(11)Q = -15(11) e2e^2fm2^2, respectively. The experimental values agree well with nuclear shell model calculations using the universal sd model-space Hamiltonians versions A and B (USDA/B) in the sdsd-model space with a 95\% probability of the canonical nucleon configuration. It is shown that the magnetic moment of 39^{39}Ca requires a larger non-sdsd-shell component than that of 37^{37}Ca for good agreement with the shell-model calculation, indicating a more robust closed sub-shell structure of 36^{36}Ca at the neutron number NN = 16 than 40^{40}Ca. The results are also compared to valence-space in-medium similarity renormalization group calculations based on chiral two- and three-nucleon interactions

    Particle tracking for polydisperse sedimenting droplets in phase separation

    Get PDF
    When a binary fluid demixes under a slow temperature ramp, nucleation, coarsening and sedimentation of droplets lead to an oscillatory evolution of the phase separating system. The advection of the sedimenting droplets is found to be chaotic. The flow is driven by density differences between the two phases. Here, we show how image processing can be combined with particle tracking to resolve droplet size and velocity simultaneously. Droplets are used as tracer particles, and the sedimentation velocity is determined. Taking these effects into account, droplets with radii in the range of 4 -- 40 micrometers are detected and tracked. Based on this data we resolve the oscillations in the droplet size distribution which are coupled to the convective flow.Comment: 13 pages; 16 figures including 3 photographs and 3 false-color plot

    A global data-driven census of Salmonella small proteins and their potential functions in bacterial virulence.

    Get PDF
    Small proteins are an emerging class of gene products with diverse roles in bacterial physiology. However, a full understanding of their importance has been hampered by insufficient genome annotations and a lack of comprehensive characterization in microbes other than Escherichia coli. We have taken an integrative approach to accelerate the discovery of small proteins and their putative virulence-associated functions in Salmonella Typhimurium. We merged the annotated small proteome of Salmonella with new small proteins predicted with in silico and experimental approaches. We then exploited existing and newly generated global datasets that provide information on small open reading frame expression during infection of epithelial cells (dual RNA-seq), contribution to bacterial fitness inside macrophages (Transposon-directed insertion sequencing), and potential engagement in molecular interactions (Grad-seq). This integrative approach suggested a new role for the small protein MgrB beyond its known function in regulating PhoQ. We demonstrate a virulence and motility defect of a Salmonella ΔmgrB mutant and reveal an effect of MgrB in regulating the Salmonella transcriptome and proteome under infection-relevant conditions. Our study highlights the power of interpreting available 'omics' datasets with a focus on small proteins, and may serve as a blueprint for a data integration-based survey of small proteins in diverse bacteria

    The Beta-decay Paul Trap Mk IV: Design and commissioning

    Full text link
    The Beta-decay Paul Trap is an open-geometry, linear trap used to measure the decays of 8^8Li and 8^8B to search for a tensor contribution to the weak interaction. In the latest 8^8Li measurement of Burkey et al. (2022), β\beta scattering was the dominant experimental systematic uncertainty. The Beta-decay Paul Trap Mk IV reduces the prevalence of β\beta scattering by a factor of 4 through a redesigned electrode geometry and the use of glassy carbon and graphite as electrode materials. The trap has been constructed and successfully commissioned with 8^8Li in a new data campaign that collected 2.6 million triple coincidence events, an increase in statistics by 30% with 4 times less β\beta scattering compared to the previous 8^8Li data set.Comment: 17 pages, 7 figure

    Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases

    Get PDF
    Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer’s disease, atypical neurodegenerative dementias and Parkinson’s disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases
    corecore