2,624 research outputs found

    Magnetic Correlations at Graphene Edges

    Get PDF
    Magnetic zigzag edges of graphene are considered as a basis for novel spintronics devices despite the fact that no true long-range magnetic order is possible in one dimension. We study the transverse and longitudinal fluctuations of magnetic moments at zigzag edges of graphene from first principles. We find a high value for the spin wave stiffness DD = 2100 meV \AA2^2 and a spin-collinear domain wall creation energy EdwE_dw = 114 meV accompanied by low magnetic anisotropy. Above the crossover temperature Tx≈T_x \approx10 K the spin correlation length Ο∝T−1\xi \propto T^{-1} limits the long-range magnetic order to ~1 nm at 300 K while below TxT_x it grows exponentially with decreasing temperature. We discuss possible ways of increasing the range of magnetic order and effects of edge roughness on it.Comment: 4 pages, 4 figure

    Nuclear Magnetic Relaxation Rate in a Noncentrosymmetric Superconductor

    Get PDF
    For a noncentrosymmetric superconductor such as CePt3Si, we consider a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. We demonstrate that such a model on a qualitative level accounts for experimentally observed features of the temperature dependence of the nuclear spin-lattice relaxation rate 1/T1, namely a peak just below Tc and a line-node gap behavior at low temperatures.Comment: 4 page

    Theory of superconductivity of carbon nanotubes and graphene

    Full text link
    We present a new mechanism of carbon nanotube superconductivity that originates from edge states which are specific to graphene. Using on-site and boundary deformation potentials which do not cause bulk superconductivity, we obtain an appreciable transition temperature for the edge state. As a consequence, a metallic zigzag carbon nanotube having open boundaries can be regarded as a natural superconductor/normal metal/superconductor junction system, in which superconducting states are developed locally at both ends of the nanotube and a normal metal exists in the middle. In this case, a signal of the edge state superconductivity appears as the Josephson current which is sensitive to the length of a nanotube and the position of the Fermi energy. Such a dependence distinguishs edge state superconductivity from bulk superconductivity.Comment: 5 pages, 2 figure

    Resonant X-ray Study on the Bi-Layered Perovskite Mn Oxide LaSr2Mn2O7

    Full text link
    Charge and orbital ordering behaviors in the half doped bi-layered compound LaSr2Mn2O7 have been studied by resonant and non-resonant X-ray scattering. Three different order parameters, which correspond to the A-type antiferromagnetic, a charge and an orbital ordered states, were observed by measuring the magnetostriction and the superlattice peaks characterized by wavevectors (1/2 1/2 0) and (1/4 1/4 0), respectively. The superlattice reflections indicating the charge and orbital ordered states were observed below 210 K. Both the intensities reach a maximum at 160 K on cooling and become very weak below 100 K. The peak width of the charge ordered state agrees with that of the orbital ordered state at all temperatures studied. These results indicate that both the states originate from a single phase and that the charge/orbital ordered islands with definite interfaces disperse in the A-type antiferromagnetic phase. The dimensionality of the charge/orbital ordered phase is discussed using this model.Comment: 9pages, 10 figure

    FAS-dependent cell death in α-synuclein transgenic oligodendrocyte models of multiple system atrophy

    Get PDF
    Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention

    Electron Wave Function in Armchair Graphene Nanoribbons

    Full text link
    By using analytical solution of a tight-binding model for armchair nanoribbons, it is confirmed that the solution represents the standing wave formed by intervalley scattering and that pseudospin is invariant under the scattering. The phase space of armchair nanoribbon which includes a single Dirac singularity is specified. By examining the effects of boundary perturbations on the wave function, we suggest that the existance of a strong boundary potential is inconsistent with the observation in a recent scanning tunneling microscopy. Some of the possible electron-density superstructure patterns near a step armchair edge located on top of graphite are presented. It is demonstrated that a selection rule for the G band in Raman spectroscopy can be most easily reproduced with the analytical solution.Comment: 7 pages, 4 figure

    Conductance Fluctuations in Disordered Wires with Perfectly Conducting Channels

    Full text link
    We study conductance fluctuations in disordered quantum wires with unitary symmetry focusing on the case in which the number of conducting channels in one propagating direction is not equal to that in the opposite direction. We consider disordered wires with N+mN+m left-moving channels and NN right-moving channels. In this case, mm left-moving channels become perfectly conducting, and the dimensionless conductance gg for the left-moving channels behaves as g→mg \to m in the long-wire limit. We obtain the variance of gg in the diffusive regime by using the Dorokhov-Mello-Pereyra-Kumar equation for transmission eigenvalues. It is shown that the universality of conductance fluctuations breaks down for m≠0m \neq 0 unless NN is very large.Comment: 6 pages, 2 figure

    Ferromagnetism in Oriented Graphite Samples

    Full text link
    We have studied the magnetization of various, well characterized samples of highly oriented pyrolitic graphite (HOPG), Kish graphite and natural graphite to investigate the recently reported ferromagnetic-like signal and its possible relation to ferromagnetic impurities. The magnetization results obtained for HOPG samples for applied fields parallel to the graphene layers - to minimize the diamagnetic background - show no correlation with the magnetic impurity concentration. Our overall results suggest an intrinsic origin for the ferromagnetism found in graphite. We discuss possible origins of the ferromagnetic signal.Comment: 11 figure
    • 

    corecore