2,395 research outputs found

    Spin melting and refreezing driven by uniaxial compression on a dipolar hexagonal plate

    Full text link
    We investigate freezing characteristics of a finite dipolar hexagonal plate by the Monte Carlo simulation. The hexagonal plate is cut out from a piled triangular lattice of three layers with FCC-like (ABCABC) stacking structure. In the present study an annealing simulation is performed for the dipolar plate uniaxially compressed in the direction of layer-piling. We find spin melting and refreezing driven by the uniaxial compression. Each of the melting and refreezing corresponds one-to-one with a change of the ground states induced by compression. The freezing temperatures of the ground-state orders differ significantly from each other, which gives rise to the spin melting and refreezing of the present interest. We argue that these phenomena are originated by a finite size effect combined with peculiar anisotropic nature of the dipole-dipole interaction.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference. To appear in a special issue of J. Phys. Condens. Matte

    Star Formation Efficiency in the Central 1 kpc Region of Early-Type Spiral Galaxies

    Get PDF
    It has been reported recently that there are some early-type spiral (Sa--Sab) galaxies having evident star-forming regions which concentrate in their own central 1-kpc. In such central region, is the mechanism of the star formation distinct from that in disks of spiral galaxies? To reveal this, we estimate the star formation efficiency (SFE) in this central 1-kpc star-forming region of some early-type spiral galaxies, taking account of the condition for this 1-kpc region to be self-gravitating. Using two indicators of present star formation rate (Hα\alpha and infrared luminosity), we estimate the SFE to be a few percents. This is equivalent to the observational SFE in the disks of late-type spiral (Sb--) galaxies. This coincidence may support the universality of the mean SFE of spiral galaxies reported in the recent studies. That is, we find no evidence of distinct mechanism of the star formation in the central 1-kpc region of early-type galaxies. Also, we examine the structure of the central star-forming region, and discuss a method for estimating the mass of star-forming regions.Comment: accepted by A

    Is the evidence for dark energy secure?

    Full text link
    Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann-Robertson-Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass 0.5 eV. Although such an Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the `baryon acoustic oscillation' peak in the autocorrelation function of galaxies, it may be possible to do so e.g. in an inhomogeneous Lemaitre-Tolman-Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references reformatted in journal style - text unchange

    Phase Diagram of Pressure-Induced Superconductivity in EuFe2As2 Probed by High-Pressure Resistivity up to 3.2 GPa

    Full text link
    We have constructed a pressure-temperature (PTP-T) phase diagram of PP-induced superconductivity in EuFe2_2As2_2 single crystals, via resistivity (ρ\rho) measurements up to 3.2 GPa. As hydrostatic pressure is applied, an antiferromagnetic (AF) transition attributed to the FeAs layers at T0T_\mathrm{0} shifts to lower temperatures, and the corresponding resistive anomaly becomes undetectable for PP \ge 2.5 GPa. This suggests that the critical pressure PcP_\mathrm{c} where T0T_\mathrm{0} becomes zero is about 2.5 GPa. We have found that the AF order of the Eu2+^{2+} moments survives up to 3.2 GPa without significant changes in the AF ordering temperature TNT_\mathrm{N}. The superconducting (SC) ground state with a sharp transition to zero resistivity at TcT_\mathrm{c} \sim 30 K, indicative of bulk superconductivity, emerges in a pressure range from PcP_\mathrm{c} \sim 2.5 GPa to \sim 3.0 GPa. At pressures close to but outside the SC phase, the ρ(T)\rho(T) curve shows a partial SC transition (i.e., zero resistivity is not attained) followed by a reentrant-like hump at approximately TNT_\mathrm{N} with decreasing temperature. When nonhydrostatic pressure with a uniaxial-like strain component is applied using a solid pressure medium, the partial superconductivity is continuously observed in a wide pressure range from 1.1 GPa to 3.2 GPa.Comment: 7 pages, 6 figures, accepted for publication in Physical Review B, selected as "Editors' Suggestion

    Long-wavelength approximation for string cosmology with barotropic perfect fluid

    Full text link
    The field equations derived from the low energy string effective action with a matter tensor describing a perfect fluid with a barotropic equation of state are solved iteratively using the long-wavelength approximation, i.e. the field equations are expanded by the number of spatial gradients. In the zero order, a quasi-isotropic solution is presented and compared with the general solution of the pure dilaton gravity. Possible cosmological models are analyzed from the point of view of the pre-big bang scenario. The second order solutions are found and their growing and decaying parts are studied.Comment: 19 pages, 1 figur

    Lemaitre-Tolman-Bondi model and accelerating expansion

    Full text link
    I discuss the spherically symmetric but inhomogeneous Lemaitre-Tolman- Bondi (LTB) metric, which provides an exact toy model for an inhomogeneous universe. Since we observe light rays from the past light cone, not the expansion of the universe, spatial variation in matter density and Hubble rate can have the same effect on redshift as acceleration in a perfectly homogeneous universe. As a consequence, a simple spatial variation in the Hubble rate can account for the distant supernova data in a dust universe without any dark energy. I also review various attempts towards a semirealistic description of the universe based on the LTB model.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy. 17 pages, 3 figure

    Kinematic Self-Similarity

    Get PDF
    Self-similarity in general relativity is briefly reviewed and the differences between self-similarity of the first kind and generalized self-similarity are discussed. The covariant notion of a kinematic self-similarity in the context of relativistic fluid mechanics is defined. Various mathematical and physical properties of spacetimes admitting a kinematic self-similarity are discussed. The governing equations for perfect fluid cosmological models are introduced and a set of integrability conditions for the existence of a proper kinematic self-similarity in these models is derived. Exact solutions of the irrotational perfect fluid Einstein field equations admitting a kinematic self-similarity are then sought in a number of special cases, and it is found that; (1) in the geodesic case the 3-spaces orthogonal to the fluid velocity vector are necessarily Ricci-flat and (ii) in the further specialisation to dust the differential equation governing the expansion can be completely integrated and the asymptotic properties of these solutions can be determined, (iii) the solutions in the case of zero-expansion consist of a class of shear-free and static models and a class of stiff perfect fluid (and non-static) models, and (iv) solutions in which the kinematic self-similar vector is parallel to the fluid velocity vector are necessarily Friedmann-Robertson-Walker (FRW) models.Comment: 29 pages, AmsTe

    Magnetic Properties of 2-Dimensional Dipolar Squares: Boundary Geometry Dependence

    Full text link
    By means of the molecular dynamics simulation on gradual cooling processes, we investigate magnetic properties of classical spin systems only with the magnetic dipole-dipole interaction, which we call dipolar systems. Focusing on their finite-size effect, particularly their boundary geometry dependence, we study two finite dipolar squares cut out from a square lattice with Φ=0\Phi=0 and π/4\pi/4, where Φ\Phi is an angle between the direction of the lattice axis and that of the square boundary. Distinctly different results are obtained in the two dipolar squares. In the Φ=0\Phi=0 square, the ``from-edge-to-interior freezing'' of spins is observed. Its ground state has a multi-domain structure whose domains consist of the two among infinitely (continuously) degenerated Luttinger-Tisza (LT) ground-state orders on a bulk square lattice, i.e., the two antiferromagnetically aligned ferromagnetic chains (af-FMC) orders directed in parallel to the two lattice axes. In the Φ=π/4\Phi=\pi/4 square, on the other hand, the freezing starts from the interior of the square, and its ground state is nearly in a single domain with one of the two af-FMC orders. These geometry effects are argued to originate from the anisotropic nature of the dipole-dipole interaction which depends on the relative direction of sites in a real space of the interacting spins.Comment: 21 pages, 13 figures, submitted to Journal of Physical Society Japa
    corecore