Self-similarity in general relativity is briefly reviewed and the differences
between self-similarity of the first kind and generalized self-similarity are
discussed. The covariant notion of a kinematic self-similarity in the context
of relativistic fluid mechanics is defined. Various mathematical and physical
properties of spacetimes admitting a kinematic self-similarity are discussed.
The governing equations for perfect fluid cosmological models are introduced
and a set of integrability conditions for the existence of a proper kinematic
self-similarity in these models is derived. Exact solutions of the irrotational
perfect fluid Einstein field equations admitting a kinematic self-similarity
are then sought in a number of special cases, and it is found that; (1) in the
geodesic case the 3-spaces orthogonal to the fluid velocity vector are
necessarily Ricci-flat and (ii) in the further specialisation to dust the
differential equation governing the expansion can be completely integrated and
the asymptotic properties of these solutions can be determined, (iii) the
solutions in the case of zero-expansion consist of a class of shear-free and
static models and a class of stiff perfect fluid (and non-static) models, and
(iv) solutions in which the kinematic self-similar vector is parallel to the
fluid velocity vector are necessarily Friedmann-Robertson-Walker (FRW) models.Comment: 29 pages, AmsTe