30,246 research outputs found

    Hole-trapping by Ni, Kondo effect and electronic phase diagram in non-superconducting Ni-substituted La2-xSrxCu1-yNiyO4

    Full text link
    In order to investigate the electronic state in the normal state of high-Tc cuprates in a wide range of temperature and hole-concentration, specific-heat, electrical-resistivity, magnetization and muon-spin-relaxation (muSR) measurements have been performed in non-superconducting Ni-substituted La2-xSrxCu1-yNiyO4 where the superconductivity is suppressed through the partial substitution of Ni for Cu without disturbing the Cu-spin correlation in the CuO2 plane so much. In the underdoped regime, it has been found that there exist both weakly localized holes around Ni and itinerant holes at high temperatures. With decreasing temperature, all holes tend to be localized, followed by the occurrence of variable-range hopping conduction at low temperatures. Finally, in the ground state, it has been found that each Ni2+ ion traps a hole strongly and that a magnetically ordered state appears. In the overdoped regime, on the other hand, it has been found that a Kondo-like state is formed around each Ni2+ spin at low temperatures. In conclusion, the ground state of non-superconducting La2-xSrxCu1-yNiyO4 changes upon hole doping from a magnetically ordered state with the strong hole-trapping by Ni2+ to a metallic state with Kondo-like behavior due to Ni2+ spins, and the quantum phase transition is crossover-like due to the phase separation into short-range magnetically ordered and metallic regions.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Modified Reconstruction of Standard Model in Non-Commutative Differential Geometry

    Full text link
    Sogami recently proposed the new idea to express Higgs particle as a kind of gauge particle by prescribing the generalized covariant derivative with gauge and Higgs fields operating on quark and lepton fields. The field strengths for both the gauge and Higgs fields are defined by the commutators of the covariant derivative by which he could obtain the Yang-Mills Higgs Lagrangian in the standard model. Inspired by Sogami's work, we present a modification of our previous scheme to formulate the spontaneously broken gauge theory in non-commutative geometry on the discrete space; Minkowski space multiplied by two points space by introducing the generation mixing matrix in operation of the generalized derivative on the more fundamental fields a_i(x,y) which compose the gauge and Higgs fields. The standard model is reconstructed according to the modified scheme, which does not yields not only any special relations between the particle masses but also the special restriction on the Higgs potential.Comment: 21 page

    Development of Cu-spin correlation in Bi_1.74_Pb_0.38_Sr_1.88_Cu_1-y_Zn_y_O_6+d_ high-temperature superconductors observed by muon spin relaxation

    Full text link
    A systematic muon-spin-relaxation study in Bi-2201 high-Tc cuprates has revealed for the first time that the Cu-spin correlation (CSC) is developed at low temperatures below 2 K in a wide range of hole concentration where superconductivity appears. The CSC tends to become weak gradually with increasing hole-concentration. Moreover, CSC has been enhanced through the 3% substitution of Zn for Cu. These results are quite similar to those observed in La-214 high-Tc cuprates. Accordingly, it has been suggested that the intimate relation between the so-called spin-charge stripe correlations and superconductivity is a universal feature in hole-doped high-Tc cuprates. Furthermore, apparent development of CSC, which is suppressed through the Zn substitution oppositely, has been observed in non-superconducting heavily overdoped samples, being argued in the context of a recently proposed ferromagnetic state in heavily overdoped cuprates.Comment: 6 pages, 5 figure

    Occupation probability of harmonic-oscillator quanta for microscopic cluster-model wave functions

    Get PDF
    We present a new and simple method of calculating the occupation probability of the number of total harmonic-oscillator quanta for a microscopic cluster-model wave function. Examples of applications are given to the recent calculations including α+n+n\alpha+n+n-model for 6^6He, α+t+n+n\alpha+t+n+n-model for 9^9Li, and α+α+n\alpha+\alpha+n-model for 9^9Be as well as the classical calculations of α+p+n\alpha+p+n-model for 6^6Li and α+α+α\alpha+\alpha+\alpha-model for 12^{12}C. The analysis is found to be useful for quantifying the amount of excitations across the major shell as well as the degree of clustering. The origin of the antistretching effect is discussed.Comment: 9 page

    Ab initio study of the photoabsorption of 4^4He

    Full text link
    There are some discrepancies in the low energy data on the photoabsorption cross section of 4^4He. We calculate the cross section with realistic nuclear forces and explicitly correlated Gaussian functions. Final state interactions and two- and three-body decay channels are taken into account. The cross section is evaluated in two methods: With the complex scaling method the total absorption cross section is obtained up to the rest energy of a pion, and with the microscopic RR-matrix method both cross sections 4^4He(γ,p\gamma, p)3^3H and 4^4He(γ,n\gamma, n)3^3He are calculated below 40\,MeV. Both methods give virtually the same result. The cross section rises sharply from the 3^3H+pp threshold, reaching a giant resonance peak at 26--27\,MeV. Our calculation reproduces almost all the data above 30\,MeV. We stress the importance of 3^3H+pp and 3^3He+nn cluster configurations on the cross section as well as the effect of the one-pion exchange potential on the photonuclear sum rule.Comment: 15 pages, 12 figure

    Distinct Fe-induced magnetic states in the underdoped and overdoped regimes of La2-xSrxCu1-yFeyO4 revealed by muon spin relaxation

    Full text link
    Zero-field and longitudinal-field muon-spin-relaxation measurements have been performed in partially Fe-substituted La2-xSrxCu1-yFeyO4 in a wide range of hole concentration, to investigate the magnetic state induced by the Fe substitution recently suggested from the neutron-scattering measurements [Phys. Rev. Lett. 107, 127002 (2011)]. It has been found that the magnetic transition temperature is notably enhanced through the 1% Fe substitution in a wide range of hole concentration where superconductivity appears in Fe-free La2-xSrxCuO4. In the underdoped regime, the Fe-induced magnetic order can be understood in terms of the concept of stripe pinning by Fe as in the case of the Zn-induced one in La2-xSrxCu1-yZnyO4. In the overdoped regime, on the other hand, the Fe-induced magnetic order is short-ranged, which is distinct from the stripes. It is plausible that a spin-glass state of Fe spins derived from the Ruderman-Kittel-Kasuya-Yosida interaction is realized in the overdoped regime, suggesting a change of the ground state from the strongly correlated state to the Fermi-liquid state with hole doping in La-214 high-Tc cuprates.Comment: 10 pages, 6 figures, accepted for publication in Phys. Rev.
    corecore