8,195 research outputs found

    Yang-Mills theory constructed from Cho--Faddeev--Niemi decomposition

    Full text link
    We give a new way of looking at the Cho--Faddeev--Niemi (CFN) decomposition of the Yang-Mills theory to answer how the enlarged local gauge symmetry respected by the CFN variables is restricted to obtain another Yang-Mills theory with the same local and global gauge symmetries as the original Yang-Mills theory. This may shed new light on the fundamental issue of the discrepancy between two theories for independent degrees of freedom and the role of the Maximal Abelian gauge in Yang-Mills theory. As a byproduct, this consideration gives new insight into the meaning of the gauge invariance and the observables, e.g., a gauge-invariant mass term and vacuum condensates of mass dimension two. We point out the implications for the Skyrme--Faddeev model.Comment: 17pages, 1 figure; English improved; a version appeared in Prog. Theor. Phy

    UV and X-ray Spectral Lines of FeXXIII Ion for Plasma Diagnostics

    Full text link
    We have calculated X-ray and UV spectra of Be-like Fe (FeXXIII) ion in collisional-radiative model including all fine-structure transitions among the 2s^2, 2s2p, 2p^2, 2snl, and 2pnl levels where n=3 and 4, adopting data for the collision strengths by Zhang & Sampson (1992) and by Sampson, Goett, & Clark (1984). Some line intensity ratios can be used for the temperature diagnostics. We show 5 ratios in UV region and 9 ratios in X-ray region as a function of electron temperature and density at 0.3keV < T_e < 10keV and ne=1−1025cm−3n_e = 1 - 10^{25} cm^{-3}. The effect of cascade in these line ratios and in the level population densities are discussed.Comment: LaTeX, 18 pages, 10 Postscript figures. To appear in Physica Script

    1D Modeling for Temperature-Dependent Upflow in the Dimming Region Observed by Hinode/EIS

    Full text link
    We have previously found a temperature-dependent upflow in the dimming region following a coronal mass ejection (CME) observed by the {\it Hinode} EUV Imaging Spectrometer (EIS). In this paper, we reanalyzed the observations along with previous work on this event, and provided boundary conditions for modeling. We found that the intensity in the dimming region dramatically drops within 30 minutes from the flare onset, and the dimming region reaches the equilibrium stage after ∼\sim1 hour later. The temperature-dependent upflows were observed during the equilibrium stage by EIS. The cross sectional area of the fluxtube in the dimming region does not appear to expand significantly. From the observational constraints, we reconstructed the temperature-dependent upflow by using a new method which considers the mass and momentum conservation law, and demonstrated the height variation of plasma conditions in the dimming region. We found that a super radial expansion of the cross sectional area is required to satisfy the mass conservation and momentum equations. There is a steep temperature and velocity gradient of around 7 Mm from the solar surface. This result may suggest that the strong heating occurred above 7 Mm from the solar surface in the dimming region. We also showed that the ionization equilibrium assumption in the dimming region is violated especially in the higher temperature range.Comment: accepted for publication in The Astrophysical Journa

    Solving the Schwinger-Dyson Equations for Gluodynamics in the Maximal Abelian Gauge

    Full text link
    We derive the Schwinger-Dyson equations for the SU(2) Yang-Mills theory in the maximal Abelian gauge and solve them in the infrared asymptotic region. We find that the infrared asymptotic solutions for the gluon and ghost propagators are consistent with the hypothesis of Abelian dominance.Comment: 3 pages, 1 figure; Lattice2003(topology

    Giant Intrinsic Spin and Orbital Hall Effects in Sr2MO4 (M=Ru,Rh,Mo)

    Full text link
    We investigate the intrinsic spin Hall conductivity (SHC) and the d-orbital Hall conductivity (OHC) in metallic d-electron systems, by focusing on the t_{2g}-orbital tight-binding model for Sr2MO4 (M=Ru,Rh,Mo). The conductivities obtained are one or two orders of magnitude larger than predicted values for p-type semiconductors with 5% hole doping. The origin of these giant Hall effects is the ``effective Aharonov-Bohm phase'' that is induced by the d-atomic angular momentum in connection with the spin-orbit interaction and the inter-orbital hopping integrals. The huge SHC and OHC generated by this mechanism are expected to be ubiquitous in multiorbital transition metal complexes, which pens the possibility of realizing spintronics as well as orbitronics devices.Comment: 5 pages, accepted for publication in PR
    • …
    corecore