10,483 research outputs found
Recommended from our members
The Physio-Chemical Properties for the Interior of Enceladus
We have reviewed the current physical and chemical conditions of the Enceladus sub-surface environment, including the composition, temperature, pH and pressure. Here we have defined some of these parameters and, through the aid of modelling, will define and refine the remaining parameters needed for our experimental work. Simulations of the chemical reactions occurring within Enceladus can then be carried
out to advance our understanding of the internal environment of Enceladus and help evaluate its potential habitability. Once a better understanding of the chemical reactions occurring at the rock-water interface has been carried out, then potential analogues on Earth can be evaluated and known microbial life can be tested to see if it could survive the conditions of Enceladus
Two phase transitions in the fully frustrated model
The fully frustrated model on a square lattice is studied by means of
Monte Carlo simulations. A Kosterlitz-Thouless transition is found at , followed by an ordinary Ising transition at a slightly
higher temperature, . The non-Ising exponents reported by
others, are explained as a failure of finite size scaling due to the screening
length associated with the nearby Kosterlitz-Thouless transition.Comment: REVTEX file, 8 pages, 5 figures in uuencoded postscrip
In Search of the Vortex Loop Blowout Transition for a type-II Superconductor in a Finite Magnetic Field
The 3D uniformly frustrated XY model is simulated to search for a predicted
"vortex loop blowout" transition within the vortex line liquid phase of a
strongly type-II superconductor in an applied magnetic field. Results are shown
to strongly depend on the precise scheme used to trace out vortex line paths.
While we find evidence for a transverse vortex path percolation transition, no
signal of this transition is found in the specific heat.Comment: 11 pages, 17 figure
New, efficient, and accurate high order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions
We construct new, efficient, and accurate high-order finite differencing
operators which satisfy summation by parts. Since these operators are not
uniquely defined, we consider several optimization criteria: minimizing the
bandwidth, the truncation error on the boundary points, the spectral radius, or
a combination of these. We examine in detail a set of operators that are up to
tenth order accurate in the interior, and we surprisingly find that a
combination of these optimizations can improve the operators' spectral radius
and accuracy by orders of magnitude in certain cases. We also construct
high-order dissipation operators that are compatible with these new finite
difference operators and which are semi-definite with respect to the
appropriate summation by parts scalar product. We test the stability and
accuracy of these new difference and dissipation operators by evolving a
three-dimensional scalar wave equation on a spherical domain consisting of
seven blocks, each discretized with a structured grid, and connected through
penalty boundary conditions.Comment: 16 pages, 9 figures. The files with the coefficients for the
derivative and dissipation operators can be accessed by downloading the
source code for the document. The files are located in the "coeffs"
subdirector
Wet Belly in Reindeer (Rangifer tarandus tarandus) in Relation to Body Condition, Body Temperature and Blood Constituents
Wet belly, when the reindeer becomes wet over the lower parts of the thorax and abdomen, sometimes occurs in reindeer during feeding. In a feeding experiment, 11 out of 69 reindeer were affected by wet belly. The problem was first observed in 7 animals during a period of restricted feed intake. When the animals were then fed standard rations, 3 additional animals fed only silage, and 1 fed pellets and silage, became wet. Four animals died and 1 had to be euthanised. To investigate why reindeer developed wet belly, we compared data from healthy reindeer and reindeer affected by wet belly. Urea, plasma protein, glucose, insulin and cortisol were affected by restricted feed intake or by diet but did not generally differ between healthy reindeer and those with wet belly. The wet animals had low body temperature and the deaths occurred during a period of especially cold weather. Animals that died were emaciated and showed different signs of infections and stress. In a second experiment, with 20 reindeer, the feeding procedure of the most affected group in the first experiment was repeated, but none of the reindeer showed any signs of wet belly. The study shows that wet belly is not induced by any specific diet and may affect also lichen-fed reindeer. The fluid making the fur wet was proven to be of internal origin. Mortality was caused by emaciation, probably secondary to reduced energy intake caused by diseases and/or unsuitable feed
The Impact of NLO-Corrections on the Determination of the $\bar{u},\bar{d} Content of Nucleons from Drell-Yan Production
The interpretation of Drell-Yan production in terms of the antiquark
densities depends on NLO corrections. Besides the NLO corrections to the
familiar annihilation , there is a
substantial contribution from the QCD Compton subprocesses and . The beam and target
dependence of the two classes of corrections is different. We discuss the
impact of this difference on the determination of the
asymmetry in the proton from the comparison of the and Drell-Yan
production.Comment: 4 pages, 1 eps-figure. To be published in Proceedings of DIS'9
Recommended from our members
The anaerobic community of an estuarine environment: an analogue for life on Mars
The first step in finding potential extant, and/or extinct, life on Mars is to understand the potential biological processes that may have occurred on Mars and identify biosignatures that such processes would generate. This is dependent on identifying and characterising microbial life in suitable terrestrial analogue environments and reliably distinguishing between biotic and abiotic processes. Chemolithotrophic anaerobic microorganisms, such as methanogens, are ideal organisms for investigating potential life in the martian sub-surface as they represent deeply branched terrestrial species that would likely survive there. Furthermore, the carbon dioxide and hydrogen required for their metabolism are provided by the approximately 96% carbon dioxide atmosphere and hydrogen produced in serpentinisation and other reactions
Recommended from our members
Infrared Spectroscopic Detection of Biosignatures at Lake TĂrez, Spain: Implications for Mars
The detection of potential biosignatures with mineral matrices is part of a multifaceted approach in the search for life on other planetary bodies. The 2020 ExoMars Rosalind Franklin rover includes within its payload three IR spectrometers in the form of ISEM (Infrared Spectrometer for ExoMars), MicrOmega, and Ma-MISS (Mars Multispectral Imager for Subsurface Studies). The use of this technique in the detection and characterization of biosignatures is of great value. Organic materials are often co-deposited in terrestrial evaporites and as such have been proposed as relevant analogs in the search for life on Mars. This study focuses on Ca-sulfates collected from the hypersaline TĂrez Lake in Spain. Mid infrared and visible near infrared analysis of soils, salt crusts, and crystals with green and red layering indicative of microbial colonization of the samples was acquired from across the lake and identified the main mineral to be gypsum with inputs of carbonate and silica. Organic functional groups that could be attributed to amides and carboxylic acids were identified as well as chlorophyll; however, due to the strong mineralogical absorptions observed, these were hard to unambiguously discern. Taxonomical assignment demonstrated that the archaeal community within the samples was dominated by the halophilic extremophile Halobacteriaceae while the bacterial community was dominated by the class Nocardiaceae. The results of this research highlight that sulfates on Mars are a mixed blessing, acting as an effective host for organic matter preservation but also a material that masks the presence of organic functional groups when analyzed with spectroscopic tools similar to those due to fly on the 2020 ExoMars rover. A suite of complementary analytical techniques therefore should be used to support the spectral identification of any candidate extraterrestrial biosignatures
The anomalous threshold, confinement, and an essential singularity in the heavy-light form factor
The analytic behavior of the heavy-light meson form factor is investigated
using several relativistic examples including unconfined, weakly confined, and
strongly confined mesons. It is observed that confinement erases the anomalous
threshold singularity and also induces an essential singularity at the normal
annihilation threshold. In the weak confinement limit, the "would be" anomalous
threshold contribution is identical to that of the real singularity on its
space-like side.Comment: Latex 2.09 with epsf.sty. 24 pages of text and 8 postscript figures.
Postscript version of complete paper will also be available soon at
http://phenom.physics.wisc.edu/pub/preprints/1997/madph-97-983 or at
ftp://phenom.physics.wisc.edu/pub/preprints/1997/madph-97-98
Dynamic Approach to the Fully Frustrated XY Model
Using Monte Carlo simulations, we systematically investigate the
non-equilibrium dynamics of the chiral degree of freedom in the two-dimensional
fully frustrated XY model. The critical initial increase of the staggered
chiral magnetization is observed. By means of the short-time dynamics approach,
we estimate the second order phase transition temperature and all the
dynamic and static critical exponents , z, and .Comment: 5 pages with 6 figures include
- âŠ