167,406 research outputs found
Accretion column eclipses in the X-ray pulsars GX 1+4 and RX J0812.4-3114
Sharp dips observed in the pulse profiles of three X-ray pulsars (GX 1+4, RX
J0812.4-3114 and A 0535+26) have previously been suggested to arise from
partial eclipses of the emission region by the accretion column occurring once
each rotation period. We present pulse-phase spectroscopy from Rossi X-ray
Timing Explorer satellite observations of GX 1+4 and RX J0812.4-3114 which for
the first time confirms this interpretation. The dip phase corresponds to the
closest approach of the column axis to the line of sight, and the additional
optical depth for photons escaping from the column in this direction gives rise
to both the decrease in flux and increase in the fitted optical depth measured
at this phase. Analysis of the arrival time of individual dips in GX~1+4
provides the first measurement of azimuthal wandering of a neutron star
accretion column. The column longitude varies stochastically with standard
deviation 2-6 degrees depending on the source luminosity. Measurements of the
phase width of the dip both from mean pulse profiles and individual eclipses
demonstrates that the dip width is proportional to the flux. The variation is
consistent with that expected if the azimuthal extent of the accretion column
depends only upon the Keplerian velocity at the inner disc radius, which varies
as a consequence of the accretion rate Mdot.Comment: 7 pages, 5 figures, accepted by MNRAS. Included reference
Smearing effect due to the spread of a probe-particle on the Brownian motion near a perfectly reflecting boundary
Quantum fluctuations of electromagnetic vacuum are investigated in a
half-space bounded by a perfectly reflecting plate by introducing a probe
described by a charged wave-packet distribution in time-direction. The
wave-packet distribution of the probe enables one to investigate the smearing
effect upon the measured vacuum fluctuations caused by the quantum nature of
the probe particle. It is shown that the wave-packet spread of the probe
particle significantly influences the measured velocity dispersion of the
probe. In particular, the asymptotic late-time behavior of its -component, , for the wave-packet case is quite different from the test
point-particle case ( is the coordinate normal to the plate). The result for
the wave-packet is \sim 1/\t^2 in the late time (\t is the
measuring time), in stead of the reported late-time behavior for a point-particle probe. This result can be quite significant
for further investigations on the measurement of vacuum fluctuations.Comment: 8 page
Determination of the internal structure of neutron stars from gravitational wave spectra
In this paper the internal structure of a neutron star is shown to be
inferrable from its gravitational-wave spectrum. Iteratively applying the
inverse scheme of the scaled coordinate logarithmic perturbation method for
neutron stars proposed by Tsui and Leung [Astrophys. J. {\bf 631}, 495 (2005)],
we are able to determine the mass, the radius and the mass distribution of a
star from its quasi-normal mode frequencies of stellar pulsation. In addition,
accurate equation of state of nuclear matter can be obtained from such
inversion scheme. Explicit formulas for the case of axial -mode oscillation
are derived here and numerical results for neutron stars characterized by
different equations of state are shown.Comment: 26 pages, 14 figures, submitted to Physical Review
Compton Scattering of Fe K alpha Lines in Magnetic Cataclysmic Variables
Compton scattering of X-rays in the bulk flow of the accretion column in
magnetic cataclysmic variables (mCVs) can significantly shift photon energies.
We present Monte Carlo simulations based on a nonlinear algorithm demonstrating
the effects of Compton scattering on the H-like, He-like and neutral Fe K alpha
lines produced in the post-shock region of the accretion column. The peak line
emissivities of the photons in the post-shock flow are taken into consideration
and frequency shifts due to Doppler effects are also included. We find that
line profiles are most distorted by Compton scattering effects in strongly
magnetized mCVs with a low white dwarf mass and high mass accretion rate and
which are viewed at an oblique angle with respect to the accretion column. The
resulting line profiles are most sensitive to the inclination angle. We have
also explored the effects of modifying the accretion column width and using a
realistic emissivity profile. We find that these do not have a significant
overall effect on the resulting line profiles. A comparison of our simulated
line spectra with high resolution Chandra/HETGS observations of the mCV GK Per
indicates that a wing feature redward of the 6.4 keV line may result from
Compton recoil near the base of the accretion column.Comment: Accepted for publication in MNRAS, 10 pages with 8 figure
Recommended from our members
Experimental and Numerical Investigation on Progressive Collapse Resistance of Post-tensioned Precast Concrete Beam-Column Sub-assemblages
In this paper, four 1/2 scaled precast concrete (PC) beam-column sub-assemblages with high performance connection were tested under push-down loading procedure to study the load resisting mechanism of PC frames subjected to different column removal scenarios. The parameters investigated include the location of column removal and effective prestress in tendons. The test results indicated that the failure modes of unbonded post-tensioned precast concrete (PTPC) frames were different from that of reinforced concrete (RC) frames: no cracks formed in the beams and wide opening formed near the beam to column interfaces. For specimens without overhanging beams, the failure of side column was eccentric compression failure. Moreover, the load resisting mechanisms in PC frames were significantly different from that of RC frames: the compressive arch action (CAA) developed in concrete during column removal was mainly due to actively applied pre-compressive stress in the concrete; CAA will not vanish when severe crush in concrete occurred. Thus, it may provide negative contribution for load resistance when the displacement exceeds one-beam depth; the tensile force developed in the tendons could provide catenary action from the beginning of the test. Moreover, to deeper understand the behavior of tested specimens, numerical analyses were carried out. The effects of concrete strength, axial compression ratio at side columns, and loading approaches on the behavior of the sub-assemblages were also investigated based on validated numerical analysis
Pressure-Induced Anomalous Phase Transitions and Colossal Enhancement of Piezoelectricity in PbTiO
We find an unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase
transition sequence induced by pressure, and a morphotropic phase boundary in a
pure compound using first-principles calculations. Huge dielectric and
piezoelectric coupling constants occur in the transition regions, comparable to
those observed in the new complex single-crystal solid-solution piezoelectrics
such as Pb(MgNb)O-PbTiO, which are expected to
revolutionize electromechanical applications. Our results show that
morphotropic phase boundaries and giant piezoelectric effects do not require
intrinsic disorder, and open the possibility of studying this effect in simple
systems.Comment: 4 pages, to appear in Phys. Rev. Let
Interlayer pair tunneling and gap anisotropy in YBaCuO
Recent ARPES measurement observed a large -axis gap anisotropy,
, in clean YBaCuO. This
indicates that some sub-dominant component may exist in the -wave
dominant gap. We propose that the interlayer pairing tunneling contribution can
be determined through the investigation of the order parameter anisotropy.
Their potentially observable features in transport and spin dynamics are also
studied.Comment: 4 pages, 3 figure
- …
