238,104 research outputs found

    Is Lavelle-McMullan transformation a really new symmetry in QED?

    Get PDF
    Lavelle-McMullan symmetry of QED is examined at classical and quantum levels. It is shown that Lavelle-McMullan symmetry does not give any new non-trivial information in QED by examining the Ward-Takahashi identities. Being inspired by the examination of Ward-Takahashi identity, we construct the generalized non-local and non-covariant symmetries of QED.Comment: LATEX, 9 pages, two figures generated by Feynma

    Evolution of the Protein Interaction Network of Budding Yeast: Role of the Protein Family Compatibility Constraint

    Full text link
    Understanding of how protein interaction networks (PIN) of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce a hybrid network model composed of the yeast PIN and the protein family interaction network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed ones: gene duplication, divergence, and mutation. We investigate diverse structural properties of our model with parameter values relevant to yeast, finding that the model successfully reproduces the empirical data.Comment: 5 pages, 5 figures, 1 table. Title changed. Final version published in JKP

    Lattice Calculation of Quarkonium Decay Matrix Elements

    Get PDF
    We calculate the NRQCD matrix elements for the decays of the lowest-lying S- and P-wave states of charmonium and bottomonium in quenched lattice QCD. We also compute the one-loop relations between the lattice and continuum matrix elements.Comment: 10 pages, LaTeX. Talk presented at the Quarkonium Physics Workshop, University of Illinois, Chicago, June 13-15, 199

    The thermopower as a fingerprint of the Kondo breakdown quantum critical point

    Full text link
    We propose that the thermoelectric power distinguishes two competing scenarios for quantum phase transitions in heavy fermions : the spin-density-wave (SDW) theory and breakdown of the Kondo effect. In the Kondo breakdown scenario, the Seebeck coefficient turns out to collapse from the temperature scale EE^{*}, associated with quantum fluctuations of the Fermi surface reconfiguration. This feature differs radically from the physics of the SDW theory, where no reconstruction of the Fermi surface occurs, and can be considered as the hallmark of the Kondo breakdown theory. We test these ideas, upon experimental results for YbRh2_2Si2_2

    Inclusive angular distribution of alpha and Li fragments produced in the Fe-C and Fe-Pb collisions at 1.88 GeV/u

    Get PDF
    The LS (laboratory system) emission angles theta for 2188 and 298 Li fragments, produced inclusively in relativistic Fe-C and Fe-Pb collisions, have been measured in reference to incident Fe-ion beam tracks nearby in nuclear emulsion. An empirical differential frequency formula, dN(cot theta) = exp (a + b cot theta)d(cot theta) is obtained with the constant b approx. = -0.026 at 1.88 GeV/u, which seems to be independent on the kinds of target nucleus as well as on the kinds of projectile fragments
    corecore