293 research outputs found

    Dopant Induced Stabilization of Silicon Cluster at Finite Temperature

    Get PDF
    With the advances in miniaturization, understanding and controlling properties of significant technological systems like silicon in nano regime assumes considerable importance. It turns out that small silicon clusters in the size range of 15-20 atoms are unstable upon heating and in fact fragment in the temperature range of 1200 K to 1500 K. In the present work we demonstrate that it is possible to stabilize such clusters by introducing appropriate dopant (in this case Ti). Specifically, by using the first principle density functional simulations we show that Ti doped Si16_{16}, having the Frank-Kasper geometry, remains stable till 2200 K and fragments only above 2600 K. The observed melting transition is a two step process. The first step is initiated by the surface melting around 600 K. The second step is the destruction of the cage which occurs around 2250 K giving rise to a peak in the heat capacity curve.Comment: 6 pages, 8 Figs. Submitted to PR

    Survey on Classification of Online Reviews Based on Social Networking

    Get PDF
    For what reason would individuals like to vote in favor of or against content at some online groups and not at others? Social foraging hypothesis, mainly research on insect and other animal information sharing behavior, it provides new approach. Obtaining ideas from social searching hypothesis, this survey suggests that four components drive individuals' goal to vote online content (positive or negative): 1) altruistic intentions; 2) identification with the community; 3) data quality; and 4) learning self-adequacy. The survey show was tried in a study of online news groups. It found that positive voting goal was anticipated by altruistic motives, identification with the community, and learning self-adequacy. Data quality is critical for positive voting; however, it works in a indirect way through cultivating more group recognition. Negative voting expectation was anticipated by altruistic motives and data quality. Earlier research has connected through searching hypothesis to people acting alone, e.g., when an individual uses Google to search for data on the web. This survey grows the utilization of searching hypothesis to the group surroundings where people give votes to impact others in their selected group. The discoveries advance our insight about content voting and give suggestions to experts of voting systems

    Raman Signatures of Strong Kitaev Exchange Correlations in (Na1x_{1-x}Lix_x)2_2IrO3_3 : Experiments and Theory

    Full text link
    Inelastic light scattering studies on single crystals of (Na1x_{1-x}Lix_x)2_2IrO3_3 (x=0,0.05x = 0, 0.05 and 0.150.15) show a polarization independent broad band at \sim ~2750 cm1^{-1} with a large band-width 1800\sim 1800~cm1^{-1}. For Na2_2IrO3_3 the broad band is seen for temperatures 200 \leq 200~K and persists inside the magnetically ordered state. For Li doped samples, the intensity of this mode increases, shifts to lower wave-numbers and persists to higher temperatures. Such a mode has recently been predicted (Knolle et.al.) as a signature of the Kitaev spin liquid. We assign the observation of the broad band to be a signature of strong Kitaev-exchange correlations. The fact that the broad band persists even inside the magnetically ordered state suggests that dynamically fluctuating moments survive even below TNT_{N}. This is further supported by our mean field calculations. The Raman response calculated in mean field theory shows that the broad band predicted for the spin liquid state survives in the magnetically ordered state near the zigzag-spin liquid phase boundary. A comparison with the theoretical model gives an estimate of the Kitaev exchange interaction parameter to be JK57J_K\approx 57~meV.Comment: 14pages 4 figure

    Evolutionary dynamics of the most populated genotype on rugged fitness landscapes

    Full text link
    We consider an asexual population evolving on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local optima. We track the most populated genotype as it changes when the population jumps from a fitness peak to a better one during the process of adaptation. This is done using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite populations and standard Wright-Fisher dynamics for large finite populations. We show that the population fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and at short times, but the dynamics of the two models are identical for questions related to the most populated genotype. We calculate exactly several properties of the jumps in infinite populations some of which were obtained numerically in previous works. We also present our preliminary simulation results for finite populations. In particular, we measure the jump distribution in time and find that it decays as t2t^{-2} as in the quasispecies problem.Comment: Minor changes. To appear in Phys Rev

    Quantum entanglement in the NMR implementation of the Deutsch-Jozsa algorithm

    Get PDF
    A scheme to execute an n-bit Deutsch-Jozsa (D-J) algorithm using n qubits has been implemented for up to three qubits on an NMR quantum computer. For the one and two bit Deutsch problem, the qubits do not get entangled, hence the NMR implementation is achieved without using spin-spin interactions. It is for the three bit case, that the manipulation of entangled states becomes essential. The interactions through scalar J-couplings in NMR spin systems have been exploited to implement entangling transformations required for the three bit D-J algorithm.Comment: 4-pages in revtex with 5 eps figure included using psfi

    Contrasting X-ray/UV time-lags in Seyfert 1 galaxies NGC 4593 and NGC 7469 using AstroSat observations

    Full text link
    We study accretion disk-corona connection in Seyfert 1 galaxies using simultaneous UV/X-ray observations of NGC 4593 (July 14-18, 2016) and NGC 7469 (October 15-19, 2017) performed with AstroSat. We use the X-ray (0.5-7.0 keV) data acquired with the Soft X-ray Telescope (SXT) and the UV (FUV: 130-180 nm, NUV: 200-300 nm) data obtained with the Ultra-Violet Imaging Telescope (UVIT). We also use the contemporaneous Swift observations of NGC 4593 and demonstrate AstroSat's capability for X-ray/UV correlation studies. We performed UV/X-ray cross-correlation analysis using the Interpolated and the Discrete Cross-Correlation Functions and found similar results. In the case of NGC 4593, we found that the variations in the X-rays lead to those in the FUV and NUV bands by ~ 38 ks and ~ 44 ks, respectively. These UV lags favour the disk reprocessing model, they are consistent with the previous results within uncertainties. In contrast, we found an opposite trend in NGC 7469 where the soft X-ray variations lag those in the FUV and NUV bands by ~ 41 ks and ~ 49 ks, respectively. The hard lags in NGC 7469 favour the Thermal Comptonization model. Our results may provide direct observational evidence for the variable intrinsic UV emission from the accretion disk which acts as the seed for thermal Comptonization in a hot corona in a lamp-post like geometry. The non-detection of disk reverberation photons in NGC 7469, using AstroSat data, is most likely due to a high accretion rate resulting in a hot accretion disk and large intrinsic emission.Comment: 14 pages, 20 figures, Accepted for publication in MNRA

    Use of Quadrupolar Nuclei for Quantum Information processing by Nuclear Magnetic Resonance: Implementation of a Quantum Algorithm

    Get PDF
    Physical implementation of Quantum Information Processing (QIP) by liquid-state Nuclear Magnetic Resonance (NMR), using weakly coupled spin-1/2 nuclei of a molecule, is well established. Nuclei with spin>>1/2 oriented in liquid crystalline matrices is another possibility. Such systems have multiple qubits per nuclei and large quadrupolar couplings resulting in well separated lines in the spectrum. So far, creation of pseudopure states and logic gates have been demonstrated in such systems using transition selective radio-frequency pulses. In this paper we report two novel developments. First, we implement a quantum algorithm which needs coherent superposition of states. Second, we use evolution under quadrupolar coupling to implement multi qubit gates. We implement Deutsch-Jozsa algorithm on a spin-3/2 (2 qubit) system. The controlled-not operation needed to implement this algorithm has been implemented here by evolution under the quadrupolar Hamiltonian. This method has been implemented for the first time in quadrupolar systems. Since the quadrupolar coupling is several orders of magnitude greater than the coupling in weakly coupled spin-1/2 nuclei, the gate time decreases, increasing the clock speed of the quantum computer.Comment: 16 pages, 3 figure

    Green nanotechnology of MGF‑AuNPs for immunomodulatory intervention in prostate cancer therapy

    Get PDF
    Abstract Men with castration-resistant prostate cancer (CRPC) face poor prognosis and increased risk of treatment-incurred adverse effects resulting in one of the highest mortalities among patient population globally. Immune cells act as double-edged sword depending on the tumor microenvironment, which leads to increased infiltration of pro-tumor (M2) macrophages. Development of new immunomodulatory therapeutic agents capable of targeting the tumor microenvironment, and hence orchestrating the transformation of pro-tumor M2 macrophages to anti-tumor M1, would substantially improve treatment outcomes of CRPC patients. We report, herein, Mangiferin functionalized gold nanoparticulate agent (MGF-AuNPs) and its immunomodulatory characteristics in treating prostate cancer. We provide evidence of immunomodulatory intervention of MGF-AuNPs in prostate cancers through observations of enhanced levels of anti-tumor cytokines (IL-12 and TNF-α) with concomitant reductions in the levels of pro-tumor cytokines (IL-10 and IL-6). In the MGF-AuNPs treated groups, IL-12 was elevated to ten-fold while TNF-α was elevated to about 50-fold, while IL-10 and IL-6 were reduced by two-fold. Ability of MGF-AuNPs to target splenic macrophages is invoked via targeting of NF-kB signaling pathway. Finally, therapeutic efficacy of MGF-AuNPs, in treating prostate cancer in vivo in tumor bearing mice, is described taking into consideration various immunomodulatory interventions triggered by this green nanotechnology-based nanomedicine agent
    corecore