15,525 research outputs found

    Backhaul Limited Asymmetric Cooperation for MIMO Cellular Networks via Semidefinite Relaxation

    Full text link
    Multicell cooperation has recently attracted tremendous attention because of its ability to eliminate intercell interference and increase spectral efficiency. However, the enormous amount of information being exchanged, including channel state information and user data, over backhaul links may deteriorate the network performance in a realistic system. This paper adopts a backhaul cost metric that considers the number of active directional cooperation links, which gives a first order measurement of the backhaul loading required in asymmetric Multiple-Input Multiple-Output (MIMO) cooperation. We focus on a downlink scenario for multi-antenna base stations and single-antenna mobile stations. The design problem is minimizing the number of active directional cooperation links and jointly optimizing the beamforming vectors among the cooperative BSs subject to signal-to-interference-and-noise-ratio (SINR) constraints at the mobile station. This problem is non-convex and solving it requires combinatorial search. A practical algorithm based on smooth approximation and semidefinite relaxation is proposed to solve the combinatorial problem efficiently. We show that semidefinite relaxation is tight with probability 1 in our algorithm and stationary convergence is guaranteed. Simulation results show the saving of backhaul cost and power consumption is notable compared with several baseline schemes and its effectiveness is demonstrated.Comment: 14 pages, 7 figures. This paper is accepted by IEEE Transactions on Signal Processin

    Active optical clock based on four-level quantum system

    Get PDF
    Active optical clock, a new conception of atomic clock, has been proposed recently. In this report, we propose a scheme of active optical clock based on four-level quantum system. The final accuracy and stability of two-level quantum system are limited by second-order Doppler shift of thermal atomic beam. To three-level quantum system, they are mainly limited by light shift of pumping laser field. These limitations can be avoided effectively by applying the scheme proposed here. Rubidium atom four-level quantum system, as a typical example, is discussed in this paper. The population inversion between 6S1/26S_{1/2} and 5P3/25P_{3/2} states can be built up at a time scale of 10610^{-6}s. With the mechanism of active optical clock, in which the cavity mode linewidth is much wider than that of the laser gain profile, it can output a laser with quantum-limited linewidth narrower than 1 Hz in theory. An experimental configuration is designed to realize this active optical clock.Comment: 5 page

    Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration

    Full text link
    The thermal and nonthermal pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated. The nonthermal decay into pions of sigma mesons which are popularly produced in chiral symmetric phase leads to a low-momentum pion enhancement as a possible signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure

    Thermal and Nonthermal Pion Enhancements with Chiral Symmetry Restoration

    Get PDF
    The pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2pion to the lowest order in a 1/N_c expansion is calculated as a function of temperature T and chemical potential mu. The thermal and nonthermal enhancements of pions generated by the decay before and after the freeze-out present only in the crossover region of the chiral symmetry transition. The strongest nonthermal enhancement is located in the vicinity of the endpoint of the first-order transition.Comment: Latex2e, 12 pages, 8 Postscript figures, submitted to Phys. Rev.

    Sigma Decay at Finite Temperature and Density

    Full text link
    Sigma decay and its relation with chiral phase transition are discussed at finite temperature and density in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2 pions to first order in a 1/N_c expansion is calculated as a function of temperature T and baryon density n_b. In particular, only when the chiral phase transition happens around the tricritical point, the sigma decay results in a non-thermal enhancement of pions in the final state distributions in relativistic heavy ion collisions.Comment: 6 pages, 3 Postscript figures, submitted to Chin. Phys. Let

    Superfluidity in a Three-flavor Fermi Gas with SU(3) Symmetry

    Full text link
    We investigate the superfluidity and the associated Nambu-Goldstone modes in a three-flavor atomic Fermi gas with SU(3) global symmetry. The s-wave pairing occurs in flavor anti-triplet channel due to the Pauli principle, and the superfluid state contains both gapped and gapless fermionic excitations. Corresponding to the spontaneous breaking of the SU(3) symmetry to a SU(2) symmetry with five broken generators, there are only three Nambu-Goldstone modes, one is with linear dispersion law and two are with quadratic dispersion law. The other two expected Nambu-Goldstone modes become massive with a mass gap of the order of the fermion energy gap in a wide coupling range. The abnormal number of Nambu-Goldstone modes, the quadratic dispersion law and the mass gap have significant effect on the low temperature thermodynamics of the matter.Comment: 9 pages, 2 figures, published versio

    Markov modeling of moving target defense games

    Get PDF
    We introduce a Markov-model-based framework for Moving Target Defense (MTD) analysis. The framework allows modeling of broad range of MTD strategies, provides general theorems about how the probability of a successful adversary defeating an MTD strategy is related to the amount of time/cost spent by the adversary, and shows how a multi-level composition of MTD strategies can be analyzed by a straightforward combination of the analysis for each one of these strategies. Within the proposed framework we define the concept of security capacity which measures the strength or effectiveness of an MTD strategy: the security capacity depends on MTD specific parameters and more general system parameters. We apply our framework to two concrete MTD strategies

    Pion Superfluidity and Meson Properties at Finite Isospin Density

    Full text link
    We investigate pion superfluidity and its effect on meson properties and equation of state at finite temperature and isospin and baryon densities in the frame of standard flavor SU(2) NJL model. In mean field approximation to quarks and random phase approximation to mesons, the critical isospin chemical potential for pion superfluidity is exactly the pion mass in the vacuum, and corresponding to the isospin symmetry spontaneous breaking, there is in the pion superfluidity phase a Goldstone mode which is the linear combination of the normal sigma and charged pion modes. We calculate numerically the gap equations for the chiral and pion condensates, the phase diagrams, the meson spectra, and the equation of state, and compare them with that obtained in other effective models. The competitions between pion superfluidity and color superconductivity at finite baryon density and between pion and kaon superfluidity at finite strangeness density in flavor SU(3) NJL model are briefly discussed.Comment: Updated version: (1)typos corrected; (2)an algebra error in Eq.(87) corrected; (3)Fig.(17) renewed according to Eq.(87). We thank Prof.Masayuki Matsuzaki for pointing out the error in Eq.(87
    corecore