320 research outputs found

    PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    Get PDF
    Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ~100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior

    Magnetoplasmon excitations in arrays of circular and noncircular quantum dots

    Full text link
    We have investigated the magnetoplasmon excitations in arrays of circular and noncircular quantum dots within the Thomas-Fermi-Dirac-von Weizs\"acker approximation. Deviations from the ideal collective excitations of isolated parabolically confined electrons arise from local perturbations of the confining potential as well as interdot Coulomb interactions. The latter are unimportant unless the interdot separations are of the order of the size of the dots. Local perturbations such as radial anharmonicity and noncircular symmetry lead to clear signatures of the violation of the generalized Kohn theorem. In particular, the reduction of the local symmetry from SO(2) to C4C_4 results in a resonant coupling of different modes and an observable anticrossing behaviour in the power absorption spectrum. Our results are in good agreement with recent far-infrared (FIR) transmission experiments.Comment: 25 pages, 6 figures, typeset in RevTe

    SAG101 Forms a Ternary Complex with EDS1 and PAD4 and Is Required for Resistance Signaling against Turnip Crinkle Virus

    Get PDF
    EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance

    First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring

    Get PDF
    The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz

    First M87 Event Horizon Telescope Results. III. Data Processing and Calibration

    Get PDF
    We present the calibration and reduction of Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5-11 observing campaign. These global very long baseline interferometric observations include for the first time the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA); reaching an angular resolution of 25 μas, with characteristic sensitivity limits of ∼1 mJy on baselines to ALMA and ∼10 mJy on other baselines. The observations present challenges for existing data processing tools, arising from the rapid atmospheric phase fluctuations, wide recording bandwidth, and highly heterogeneous array. In response, we developed three independent pipelines for phase calibration and fringe detection, each tailored to the specific needs of the EHT. The final data products include calibrated total intensity amplitude and phase information. They are validated through a series of quality assurance tests that show consistency across pipelines and set limits on baseline systematic errors of 2% in amplitude and 1° in phase. The M87 data reveal the presence of two nulls in correlated flux density at ∼3.4 and ∼8.3 Gλ and temporal evolution in closure quantities, indicating intrinsic variability of compact structure on a timescale of days, or several light-crossing times for a few billion solar-mass black hole. These measurements provide the first opportunity to image horizon-scale structure in M87

    Apoptosis, autophagy, necroptosis, and cancer metastasis

    Get PDF

    First M87 Event Horizon Telescope Results. VII. Polarization of the Ring

    Get PDF
    In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes

    Comparison of Polarized Radiative Transfer Codes Used by the EHT Collaboration

    Get PDF
    • …
    corecore