188 research outputs found

    Acute Kawasaki Disease: Not Just for Kids

    Get PDF
    Kawasaki Disease is a small-to-medium-vessel vasculitis that preferentially affects children. Kawasaki Disease can occur in adults, but the presentation may differ from that observed in children. Typical findings in both adults and children include fever, conjunctivitis, pharyngitis, and skin erythema progressing to a desquamating rash on the palms and soles. Adults more frequently present with cervical adenopathy (93% of adults vs. 15% of children), hepatitis (65% vs. 10%), and arthralgia (61% vs. 24–38%). In contrast, adults are less frequently affected by meningitis (10% vs. 34%), thrombocytosis (55% vs. 100%), and coronary artery aneurysms (5% vs. 18–25%). We report a case of acute Kawasaki Disease in a 24-year-old man who presented with rash, fever, and arthritis. He was successfully treated with high-dose aspirin and intravenous immunoglobulin (IVIG). Our case highlights the importance of considering Kawasaki Disease in adults presenting with symptoms commonly encountered in a general medical practice

    Employment status and work-related difficulties in stomach cancer survivors compared with the general population

    Get PDF
    Little was known about work situation and work-related difficulties, including housework after stomach cancer diagnosis. We aimed to compare employment status and work-related difficulties between stomach cancer survivors and the general population. We enrolled 408 stomach cancer survivors from two hospitals 28 months after diagnosis and 994 representative volunteers from the general population from 15 geographic districts. Working was defined as being employed (including self-employed) and nonworking as being retired or a homemaker. Nonworking was significantly higher among stomach cancer survivors (46.6%) than in the general population (36.5%). Compared with the general population, the survivors had more fatigue in performing both housework (adjusted odds ratio (aOR)=2.08; 95% confidence interval (95% CI)=1.01–4.29) and gainful work (aOR=4.02; 2.55–6.33). More cancer survivors had reduced working hours (aOR=1.42; 95% CI=4.60–28.35) and reduced work-related ability (aOR=6.11; 95% CI=3.64–10.27) than did the general population. The association of nonworking with older age and being female was significantly more positive for survivors than for the general population. Among survivors, poorer Eastern Cooperation Oncology Group Performance Status and receiving total gastrectomy were positively associated with nonworking. Stomach cancer survivors experienced more difficulties in both housework and gainful employment than did the general population. Our findings on stomach cancer survivors' work-related difficulties and the predictors of nonworking will help physicians guide patients towards more realistic postsurgical employment plans

    Rhabdovirus Matrix Protein Structures Reveal a Novel Mode of Self-Association

    Get PDF
    The matrix (M) proteins of rhabdoviruses are multifunctional proteins essential for virus maturation and budding that also regulate the expression of viral and host proteins. We have solved the structures of M from the vesicular stomatitis virus serotype New Jersey (genus: Vesiculovirus) and from Lagos bat virus (genus: Lyssavirus), revealing that both share a common fold despite sharing no identifiable sequence homology. Strikingly, in both structures a stretch of residues from the otherwise-disordered N terminus of a crystallographically adjacent molecule is observed binding to a hydrophobic cavity on the surface of the protein, thereby forming non-covalent linear polymers of M in the crystals. While the overall topology of the interaction is conserved between the two structures, the molecular details of the interactions are completely different. The observed interactions provide a compelling model for the flexible self-assembly of the matrix protein during virion morphogenesis and may also modulate interactions with host proteins

    Mutational Analysis of EGFR and Related Signaling Pathway Genes in Lung Adenocarcinomas Identifies a Novel Somatic Kinase Domain Mutation in FGFR4

    Get PDF
    BACKGROUND: Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC) specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16) of FGFR4 (Glu681Lys), identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr) in a lung adenocarcinoma cell line. CONCLUSIONS/SIGNIFICANCE: This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas

    Differential disruption of cell cycle pathways in small cell and non-small cell lung cancer

    Get PDF
    Lung cancer is the leading cause of cancer-related mortality in the world, with small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) comprising the two major cell types. Although these cell types can be distinguished readily at the histological level, knowledge of their underlying molecular differences is very limited. In this study, we compared 14 SCLC cell lines against 27 NSCLC cell lines using an integrated array comparative genomic hybridisation and gene expression profiling approach to identify subtype-specific disruptions. Using stringent criteria, we have identified 159 of the genes that are responsible for the different biology of these cell types. Sorting of these genes by their biological functions revealed the differential disruption of key components involved in cell cycle pathways. Our novel comparative combined genome and transcriptome analysis not only identified differentially altered genes, but also revealed that certain shared pathways are preferentially disrupted at different steps in these cell types. Small cell lung cancer exhibited increased expression of MRP5, activation of Wnt pathway inhibitors, and upregulation of p38 MAPK activating genes, while NSCLC showed downregulation of CDKN2A, and upregulation of MAPK9 and EGFR. This information suggests that cell cycle upregulation in SCLC and NSCLC occurs through drastically different mechanisms, highlighting the need for differential molecular target selection in the treatment of these cancers

    Characterizing the cancer genome in lung adenocarcinoma

    Full text link
    Somatic alterations in cellular DNA underlie almost all human cancers(1). The prospect of targeted therapies(2) and the development of high-resolution, genome-wide approaches(3-8) are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours ( n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in similar to 12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 ( NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62944/1/nature06358.pd
    • …
    corecore