404 research outputs found

    Neutrino Emission from Magnetized Proto-Neutron Stars in Relativistic Mean Field Theory

    Full text link
    We make a perturbative calculation of neutrino scattering and absorption in hot and dense hyperonic neutron-star matter in the presence of a strong magnetic field. We find that the absorption cross-sections show a remarkable angular dependence in that the neutrino absorption strength is reduced in a direction parallel to the magnetic field and enhanced in the opposite direction. This asymmetry in the neutrino absorbtion can be as much as 2.2 % of the entire neutrino momentum for an interior magnetic field of \sim 2 x 10^{17} G. We estimate the pulsar kick velocities associated with this asymmetry in a fully relativistic mean-field theory formulation. We show that the kick velocities calculated here are comparable to observed pulsar velocities.Comment: arXiv admin note: substantial text overlap with arXiv:1009.097

    Effects of QCD phase transition on gravitational radiation from two-dimensional collapse and bounce of massive stars

    Get PDF
    We perform two-dimensional, magnetohydrodynamical core-collapse simulations of massive stars accompanying the QCD phase transition. We study how the phase transition affects the gravitational waveforms near the epoch of core-bounce. As for initial models, we change the strength of rotation and magnetic fields. Particularly, the degree of differential rotation in the iron core (Fe-core) is changed parametrically. As for the microphysics, we adopt a phenomenological equation of state above the nuclear density, including two parameters to change the hardness before the transition. We assume the first order phase transition, where the conversion of bulk nuclear matter to a chirally symmetric quark-gluon phase is described by the MIT bag model. Based on these computations, we find that the phase transition can make the maximum amplitudes larger up to \sim 10 percents than the ones without the phase transition. On the other hand, the maximum amplitudes become smaller up to \sim 10 percents owing to the phase transition, when the degree of the differential rotation becomes larger. We find that even extremely strong magnetic fields 1017\sim 10^{17} G in the protoneutron star do not affect these results.Comment: 12 pages, 12 figures. Resubmitted to Phys.Rev.

    An eQTL Landscape of Kidney Tissue in Human Nephrotic Syndrome

    Get PDF
    © 2018 American Society of Human Genetics Expression quantitative trait loci (eQTL) studies illuminate the genetics of gene expression and, in disease research, can be particularly illuminating when using the tissues directly impacted by the condition. In nephrology, there is a paucity of eQTL studies of human kidney. Here, we used whole-genome sequencing (WGS) and microdissected glomerular (GLOM) and tubulointerstitial (TI) transcriptomes from 187 individuals with nephrotic syndrome (NS) to describe the eQTL landscape in these functionally distinct kidney structures. Using MatrixEQTL, we performed cis-eQTL analysis on GLOM (n = 136) and TI (n = 166). We used the Bayesian “Deterministic Approximation of Posteriors” (DAP) to fine-map these signals, eQTLBMA to discover GLOM- or TI-specific eQTLs, and single-cell RNA-seq data of control kidney tissue to identify the cell type specificity of significant eQTLs. We integrated eQTL data with an IgA Nephropathy (IgAN) GWAS to perform a transcriptome-wide association study (TWAS). We discovered 894 GLOM eQTLs and 1,767 TI eQTLs at FDR \u3c 0.05. 14% and 19% of GLOM and TI eQTLs, respectively, had \u3e1 independent signal associated with its expression. 12% and 26% of eQTLs were GLOM specific and TI specific, respectively. GLOM eQTLs were most significantly enriched in podocyte transcripts and TI eQTLs in proximal tubules. The IgAN TWAS identified significant GLOM and TI genes, primarily at the HLA region. In this study, we discovered GLOM and TI eQTLs, identified those that were tissue specific, deconvoluted them into cell-specific signals, and used them to characterize known GWAS alleles. These data are available for browsing and download via our eQTL browser, “nephQTL.

    Hadron-Quark Phase Transitions in Hyperon Stars

    Get PDF
    We compare the Gibbs and Maxwell constructions for the hadron-quark phase transition in neutron and protoneutron stars, including interacting hyperons in the confined phase. We find that the hyperon populations are suppressed, and that neutrino trapping shifts the onset of the phase transition. The effects on the (proto)neutron star maximum mass are explored.Comment: 11 pages, 3 figure

    Surface-modified titanium fibers as durable carbon-free platinum catalyst supports for polymer electrolyte fuel cells

    Get PDF
    Carbon-based electrodes in polymer electrolyte fuel cells (PEFCs) are prone to corrosion. Therefore, alternative "carbon-free"materials are required. Here, the use of a catalyst-coated porous metal support is proposed as a gas diffusion electrode. As a proof-of-concept, commercially available porous titanium sheets comprising sintered titanium fibers are chemically etched with NaOH, followed by heat treatment. This results in the formation of oxidized titanium nanostructures (such as nanosheets and nanotubes) at the surface. Subsequently, platinum decoration is performed via arc plasma deposition (APD). This porous composite structure is then attached to the membrane, and used as the gas diffusion electrode for PEFC membrane electrode assemblies (MEAs). This concept integrates the catalyst, catalyst support, gas diffusion layer, and current collector in a single structure, cutting down on the number of cell components and reducing total device thickness. The carbon-free nature of this integrated gas diffusion electrode is demonstrated to successfully avoid carbon corrosion during start-stop potential cycling over 60,000 potential cycles. However, further improvements in initial electrochemical activity are still required

    The importance of the mixed phase in hybrid stars built with the Nambu-Jona-Lasinio model

    Full text link
    We investigate the structure of hybrid stars based on two different constructions: one is based on the Gibbs condition for phase coexistence and considers the existence of a mixed phase (MP), and the other is based on the Maxwell construction and no mixed phase is obtained. The hadron phase is described by the non-linear Walecka model (NLW) and the quark phase by the Nambu-Jona-Lasinio model (NJL). We conclude that the masses and radii obtained are model dependent but not significantly different for both constructions.Comment: 8 pages, 7 figures, 3 table
    corecore