361 research outputs found

    Molecular formations in ultracold mixtures of interacting and noninteracting atomic gases

    Full text link
    Atom-molecule equilibrium for molecular formation processes is discussed for boson-fermion, fermion-fermion, and boson-boson mixtures of ultracold atomic gases in the framework of quasichemical equilibrium theory. After presentation of the general formulation, zero-temperature phase diagrams of the atom-molecule equilibrium states are calculated analytically; molecular, mixed, and dissociated phases are shown to appear for the change of the binding energy of the molecules. The temperature dependences of the atom or molecule densities are calculated numerically, and finite-temperature phase structures are obtained of the atom-molecule equilibrium in the mixtures. The transition temperatures of the atom or molecule Bose-Einstein condensations are also evaluated from these results. Quantum-statistical deviations of the law of mass action in atom-molecule equilibrium, which should be satisfied in mixtures of classical Maxwell-Boltzmann gases, are calculated, and the difference in the different types of quantum-statistical effects is clarified. Mean-field calculations with interparticle interactions (atom-atom, atom-molecule, and molecule-molecule) are formulated, where interaction effects are found to give the linear density-dependent term in the effective molecular binding energies. This method is applied to calculations of zero-temperature phase diagrams, where new phases with coexisting local-equilibrium states are shown to appear in the case of strongly repulsive interactions.Comment: 35 pages, 14 figure

    Intake, Digestibility and Rate of Passage of Grass in Grazing by Light Breed Horses on Different Pastures

    Get PDF
    In a previous study, grazing light breed horses could ingest CP and DE requirements for maintenance without supplements. However, their grazing behaviour, such as biting and chewing efficiency, which related to the passage rate of forage in the digestive tract and fibre digestibility, was affected by the pasture conditions (Kawai et al., 2004). In this study, the DM intake, digestibility and mean retention time (MRT) of grass in light breed horses were determined and compared in spring, summer and autumn on an improved pasture

    A compact magnetic bearing for gimballed momentum wheel

    Get PDF
    A three axis controlled magnetic bearing and its application to a momentum wheel are described. The four divided stators provide a momentum wheel with high reliability, low weight, large angular momentum storage capacity, and gimbal control. Those characteristics are desirable for spacecraft attitude control

    Meson Condensation in Dense Matter Revisited

    Full text link
    The results for meson condensation in the literature vary markedly depending on whether one uses chiral perturbation theory or the current-algebra-plus-PCAC approach. To elucidate the origin of this discrepancy, we re-examine the role of the sigma-term in meson condensation. We find that the resolution of the existing discrepancy requires a knowledge of terms in the Lagrangian that are higher order in density than hitherto considered.Comment: 10pages, USC(NT)-94-

    Diquark Bose-Einstein condensation

    Full text link
    Bose-Einstein condensation (BEC) of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasi-chemical equilibrium theory at a relatively low density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic flamework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in bound/resonant state. We obtained TC6080T_C \sim 60-80 MeV for constituent quarks and TC130T_C \sim 130 MeV for current quarks at a moderate density (ρb3ρ0\rho_b \sim 3 \rho_0). The method is also developed to include interdiquark interactions into the quasi-chemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by nearly 50%.Comment: 21 pages, 23 figure

    Parametric amplification with a friction in heavy ion collisions

    Get PDF
    We study the effects of the expansion of the system and the friction on the parametric amplification of mesonic fields in high energy heavy ion collisions within the linear σ\sigma model . The equation of motion which is similar to Mathieu equation is derived to describe the time development of classical fields in the last stage of a heavy ion collision after the freezeout time. The enhanced mode is extracted analytically by comparison with Mathieu equation and the equation of motion is solved numerically to examine whether soft modes will be enhanced or not. It is found that the strong peak appears around 267 MeV in the pion transverse momentum distribution in cases with weak friction and high maximum temperature. This enhancement can be extracted by taking the ratio between different modes in the pion transverse momentum distribution.Comment: 10 pages, 9 figures LaTeX: appendix adde

    Soliton Models for the Nucleon and Predictions for the Nucleon Spin Structure

    Get PDF
    In these lectures the three flavor soliton approach for baryons is reviewed. Effects of flavor symmetry breaking in the baryon wave--functions on axial current matrix elements are discussed. A bosonized chiral quark model is considered to outline the computation of spin dependent nucleon structure functions in the soliton picture.Comment: 12 pages, Lectures presented at the Advanced Study Institute Symmetry and Spin, Prague, 2001, to appear in the proceedings. References correcte

    Dissipative Field Theory with Caldeira-Leggett Method and its Application to Disoriented Chiral Condensation

    Get PDF
    The effective field theory including the dissipative effect is developed based on the Caldeira-Leggett theory at the classical level. After the integration of the small field fluctuations considered as the field radiation, the integro-differential field equation is given and shown to include the dissipative effects. In that derivation, special cares should be taken for the boundary condition of the integration. Application to the linear sigma model is given, and the decay process of the chiral condensate is calculated with it, both analytically in the linear approximation and numerically. With these results, we discuss the stability of chiral condensates within the quenched approximation.Comment: 16pages, ReV-Te

    Collective ferromagnetism in two-component Fermi-degenerate gas trapped in finite potential

    Full text link
    Spin asymmetry of the ground states is studied for the trapped spin-degenerate (two-component) gases of the fermionic atoms with the repulsive interaction between different components, and, for large particle number, the asymmetric (collective ferromagnetic) states are shown to be stable because it can be energetically favorable to increase the fermi energy of one component rather than the increase of the interaction energy between up-down components. We formulate the Thomas-Fermi equations and show the algebraic methods to solve them. From the Thomas-Fermi solutions, we find three kinds of ground states in finite system: 1) paramagnetic (spin-symmetric), 2) ferromagnetic (equilibrium) and 3) ferromagnetic (nonequilibrium) states. We show the density profiles and the critical atom numbers for these states obtained analytically, and, in ferromagnetic states, the spin-asymmetries are shown to occur in the central regions of the trapped gas, and grows up with increasing particle number. Based on the obtained results, we discuss the experimental conditions and current difficulties to realize the ferromagnetic states of the trapped atom gas, which should be overcome.Comment: submit to PR
    corecore