26 research outputs found

    Determination of the presence of 5-methylcytosine in Paramecium tetraurelia.

    Get PDF
    5-methylcytosine DNA methylation regulates gene expression and developmental programming in a broad range of eukaryotes. However, its presence and potential roles in ciliates, complex single-celled eukaryotes with germline-somatic genome specialization via nuclear dimorphism, are largely uncharted. While canonical cytosine methyltransferases have not been discovered in published ciliate genomes, recent studies performed in the stichotrichous ciliate Oxytricha trifallax suggest de novo cytosine methylation during macronuclear development. In this study, we applied bisulfite genome sequencing, DNA mass spectrometry and antibody-based fluorescence detection to investigate the presence of DNA methylation in Paramecium tetraurelia. While the antibody-based methods suggest cytosine methylation, DNA mass spectrometry and bisulfite sequencing reveal that levels are actually below the limit of detection. Our results suggest that Paramecium does not utilize 5-methylcytosine DNA methylation as an integral part of its epigenetic arsenal

    Determination of the presence of 5-methylcytosine in Paramecium tetraurelia.

    Get PDF
    5-methylcytosine DNA methylation regulates gene expression and developmental programming in a broad range of eukaryotes. However, its presence and potential roles in ciliates, complex single-celled eukaryotes with germline-somatic genome specialization via nuclear dimorphism, are largely uncharted. While canonical cytosine methyltransferases have not been discovered in published ciliate genomes, recent studies performed in the stichotrichous ciliate Oxytricha trifallax suggest de novo cytosine methylation during macronuclear development. In this study, we applied bisulfite genome sequencing, DNA mass spectrometry and antibody-based fluorescence detection to investigate the presence of DNA methylation in Paramecium tetraurelia. While the antibody-based methods suggest cytosine methylation, DNA mass spectrometry and bisulfite sequencing reveal that levels are actually below the limit of detection. Our results suggest that Paramecium does not utilize 5-methylcytosine DNA methylation as an integral part of its epigenetic arsenal

    Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Bupleurum chinense </it>DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of <it>B. chinense</it>, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway.</p> <p>Results</p> <p>One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388). A <it>de novo </it>assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons), 12, 649 (52.6%) of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10). All unique sequences were compared with NCBI expressed sequence tags (ESTs) (237) and encoding sequences (44) from the <it>Bupleurum </it>genus, and with a Sanger-sequenced EST dataset (3, 111). The 23, 173 (96.4%) unique sequences obtained in the present study represent novel <it>Bupleurum </it>genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (<it>P450</it>s) and 102 glycosyltransferases (<it>GT</it>s) unique sequences were also found in the 454 dataset. Full length cDNAs of 7 <it>P450</it>s and 7 uridine diphosphate <it>GT</it>s (<it>UGT</it>s) were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two <it>P450</it>s and three <it>UGT</it>s were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with <it>β-AS </it>in methyl jasmonate-treated adventitious roots and on their similar expression patterns with <it>β-AS </it>in various <it>B. chinense </it>tissues.</p> <p>Conclusions</p> <p>A collection of high-quality ESTs for <it>B. chinense </it>obtained by 454 pyrosequencing is provided here for the first time. These data should aid further research on the functional genomics of <it>B. chinense </it>and other <it>Bupleurum </it>species. The candidate genes for enzymes involved in saikosaponin biosynthesis, especially the <it>P450</it>s and <it>UGT</it>s, that were revealed provide a substantial foundation for follow-up research on the metabolism and regulation of the saikosaponins.</p
    corecore