9,575 research outputs found

    Load and resistance factor design of cold formed steel comparative study of design methods for cold formed steel

    Get PDF
    Allowable Stress Design is the current method used to design cold-formed steel structural members and connections. In this design approach, factors of safety are used to compute the allowable design stresses which are compared to the actual maximum stresses that will occur in the member during the life of the structure. In recent years, the Load and Resistance Factor Design (LRFD) method has been developed for the design of hot-rolled steel shapes and the design of cold-formed steel structural members. This method is based on probabilistic and statistical techniques to account for the many uncertainties involved with the actual design. The LRFD criteria use load factors which are applied to the external load and resistance factors that are applied to the internal resistance capacities of the structure. The allowable unfactored loads based on each design method for different types of structural members are compared and shown in graphical forms. For structural members with one type of loading, the dead-to-live load ratio contributes to the difference between the two allowable loads. For members with a combination of loads, crosssectional geometry, loading conditions, material strength, member length, along with dead-to-live load ratio will affect the difference between the allowable loads computed from allowable stress design and LRFD

    Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Ba(Fe1xCox)2As2Ba(Fe_{1-x}Co_x)_2As_2 (x = 0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap superconductivity. These gaps decrease with increasing temperature and vanish above the superconducting transition TcT_c. The two-gap nature and the slightly doping- and energy-dependent quasiparticle scattering interferences near the wave-vectors (±π,0)(\pm \pi, 0) and (0,±π)(0, \pm \pi) are consistent with sign-changing ss-wave superconductivity. The excess zero-bias conductance and the large gap-to-TcT_c ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review Letters. Contact author: Nai-Chang Yeh ([email protected]

    Superconductivity in Ti-doped Iron-Arsenide Compound Sr4Cr0.8Ti1.2O6Fe2As2

    Full text link
    Superconductivity was achieved in Ti-doped iron-arsenide compound Sr4Cr0.8Ti1.2O6Fe2As2 (abbreviated as Cr-FeAs-42622). The x-ray diffraction measurement shows that this material has a layered structure with the space group of \emph{P4/nmm}, and with the lattice constants a = b = 3.9003 A and c = 15.8376 A. Clear diamagnetic signals in ac susceptibility data and zero-resistance in resistivity data were detected at about 6 K, confirming the occurrence of bulk superconductivity. Meanwhile we observed a superconducting transition in the resistive data with the onset transition temperature at 29.2 K, which may be induced by the nonuniform distribution of the Cr/Ti content in the FeAs-42622 phase, or due to some other minority phase.Comment: 3 pages, 3 figure

    Differential Requirement for TANK-binding Kinase-1 in Type I Interferon Responses to Toll-like Receptor Activation and Viral Infection

    Get PDF
    TANK-binding kinase-1 (TBK1) and the inducible IκB kinase (IKK-i) have been shown recently to activate interferon (IFN) regulatory factor-3 (IRF3), the primary transcription factor regulating induction of type I IFNs. Here, we have compared the role and specificity of TBK1 in the type I IFN response to lipopolysaccharide (LPS), polyI:C, and viral challenge by examining IRF3 nuclear translocation, signal transducer and activator of transcription 1 phosphorylation, and induction of IFN-regulated genes. The LPS and polyI:C-induced IFN responses were abolished and delayed, respectively, in macrophages from mice with a targeted disruption of the TBK1 gene. When challenged with Sendai virus, the IFN response was normal in TBK1−/− macrophages, but defective in TBK1−/− embryonic fibroblasts. Although both TBK1 and IKK-i are expressed in macrophages, only TBK1 but not IKK-i was detected in embryonic fibroblasts by Northern blotting analysis. Furthermore, the IFN response in TBK1−/− embryonic fibroblasts can be restored by reconstitution with wild-type IKK-i but not a mutant IKK-i lacking kinase activity. Thus, our studies suggest that TBK1 plays an important role in the Toll-like receptor–mediated IFN response and is redundant with IKK-i in the response of certain cell types to viral infection

    Exact controllability of multiplex networks

    Get PDF
    Date of Acceptance: 11/09/2014Peer reviewedPublisher PD

    Entanglement control in one-dimensional s=1/2s=1/2 random XY spin chain

    Full text link
    The entanglement in one-dimensional random XY spin systems where the impurities of exchange couplings and the external magnetic fields are considered as random variables is investigated by solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics near particular locations of the system is also studied when the exchange couplings (or the external magnetic fields) satisfy three different distributions(the Gaussian distribution, double-Gaussian distribution, and bimodal distribution). We find that the entanglement can be controlled by varying the strength of external magnetic field and the different distributions of impurities. Moreover, the entanglement of some nearest-neighboring qubits can be increased for certain parameter values of the three different distributions.Comment: 13 pages, 4 figure
    corecore