43,474 research outputs found
Identification of Coulomb blockade and macroscopic quantum tunneling by noise
The effects of Macroscopic Quantum Tunneling (MQT) and Coulomb Blockade (CB)
in Josephson junctions are of considerable significance both for the
manifestations of quantum mechanics on the macroscopic scale and potential
technological applications. These two complementary effects are shown to be
clearly distinguishable from the associated noise spectra. The current noise is
determined exactly and a rather sharp crossover between flux noise in the MQT
and charge noise in the CB regions is found as the applied voltage is changed.
Related results hold for the voltage noise in current-biased junctions.Comment: 6 pages, 3 figures, epl.cls include
Decay of correlations in the dissipative two-state system
We study the equilibrium correlation function of the polaron-dressed
tunnelling operator in the dissipative two-state system and compare the
asymptoptic dynamics with that of the position correlations. For an Ohmic
spectral density with the damping strength , the correlation functions
are obtained in analytic form for all times at any and any bias. For ,
the asymptotic dynamics is found by using a diagrammatic approach within a
Coulomb gas representation. At T=0, the tunnelling or coherence correlations
drop as , whereas the position correlations show universal decay
. The former decay law is a signature of unscreened attractive
charge-charge interactions, while the latter is due to unscreened dipole-dipole
interactions.Comment: 5 pages, 5 figures, to be published in Europhys. Let
Ratchet effect in dc SQUIDs
We analyzed voltage rectification for dc SQUIDs biased with ac current with
zero mean value. We demonstrate that the reflection symmetry in the
2-dimensional SQUID potential is broken by an applied flux and with appropriate
asymmetries in the dc SQUID. Depending on the type of asymmetry, we obtain a
rocking or a simultaneously rocking and flashing ratchet, the latter showing
multiple sign reversals in the mean voltage with increasing amplitude of the ac
current. Our experimental results are in agreement with numerical solutions of
the Langevin equations for the asymmetric dc SQUID.Comment: 10 pages including 5 Postscript figure
When is electromagnetic spectrum fungible?
Fungibility is a common assumption for market-based spectrum management. In this paper, we explore the dimensions of practical fungibility of frequency bands from the point of view of the spectrum buyer who intends to use it. The exploration shows that fungibility is a complex, multidimensional concept that cannot casually be assumed. We develop two ideas for quantifying fungibility-(i) of a fungibility space in which the 'distance' between two slices of spectrum provides score of fungibility and (ii) a probabilistic score of fungibility. © 2012 IEEE
Weiss oscillations in the electronic structure of modulated graphene
We present a theoretical study of the electronic structure of modulated
graphene in the presence of a perpendicular magnetic field. The density of
states and the bandwidth for the Dirac electrons in this system are determined.
The appearance of unusual Weiss oscillations in the bandwidth and density of
states is the main focus of this work.Comment: 8 pages, 2 figures, accepted in J. Phys.: Conden. mat
The core helium flash revisited: II. Two and three-dimensional hydrodynamic simulations
We study turbulent convection during the core helium flash close to its peak
by comparing the results of two and three-dimensional hydrodynamic simulations.
We use a multidimensional Eulerian hydrodynamics code based on
state-of-the-art numerical techniques to simulate the evolution of the helium
core of a Pop I star.
Our three-dimensional hydrodynamic simulations of the evolution of a star
during the peak of the core helium flash do not show any explosive behavior.
The convective flow patterns developing in the three-dimensional models are
structurally different from those of the corresponding two-dimensional models,
and the typical convective velocities are smaller than those found in their
two-dimensional counterparts. Three-dimensional models also tend to agree
better with the predictions of mixing length theory. Our hydrodynamic
simulations show the presence of turbulent entrainment that results in a growth
of the convection zone on a dynamic time scale. Contrary to mixing length
theory, the outer part of the convection zone is characterized by a
sub-adiabatic temperature gradient.Comment: 19 pages, 18 figure
- …