2,669 research outputs found

    Some Further Results for the Stationary Points and Dynamics of Supercooled Liquids

    Full text link
    We present some new theoretical and computational results for the stationary points of bulk systems. First we demonstrate how the potential energy surface can be partitioned into catchment basins associated with every stationary point using a combination of Newton-Raphson and eigenvector-following techniques. Numerical results are presented for a 256-atom supercell representation of a binary Lennard-Jones system. We then derive analytical formulae for the number of stationary points as a function of both system size and the Hessian index, using a framework based upon weakly interacting subsystems. This analysis reveals a simple relation between the total number of stationary points, the number of local minima, and the number of transition states connected on average to each minimum. Finally we calculate two measures of localisation for the displacements corresponding to Hessian eigenvectors in samples of stationary points obtained from the Newton-Raphson-based geometry optimisation scheme. Systematic differences are found between the properties of eigenvectors corresponding to positive and negative Hessian eigenvalues, and localised character is most pronounced for stationary points with low values of the Hessian index.Comment: 16 pages, 2 figure

    Comment on ``Quasisaddles as relevant points of the potential energy surface in the dynamics of supercooled liquids'' [J. Chem. Phys. 116, 10297 (2002); cond-mat/0203301]

    Full text link
    Recently, the properties of supercooled liquids have been studied by mapping instaneous configurations onto minima of the gradient squared. It was originally suggested that this mapping would probe higher-order saddle points of the potential energy surface. However, it was subsequently shown that the majority of the minima of this function are only local minima and so do not correspond to saddles. In this comment, we provide a critique of the suggestion made by Angelani et al. [J. Chem. Phys. 116, 10297 (2002); cond-mat/0203301] that although these minima are not true saddles, they are almost saddles (hence the term quasisaddles). This issue has important implications for the interpretation of the results obtained by this approach.Comment: 2 page

    Structural relaxation in Morse clusters: Energy landscapes

    Full text link
    We perform a comprehensive survey of the potential energy landscapes of 13-atom Morse clusters, and describe how they can be characterized and visualized. Our aim is to detail how the global features of the funnel-like surface change with the range of the potential, and to relate these changes to the dynamics of structural relaxation. We find that the landscape becomes rougher and less steep as the range of the potential decreases, and that relaxation paths to the global minimum become more complicated.Comment: 21 pages, 3 tables, 5 figure

    Saddle Points and Dynamics of Lennard-Jones Clusters, Solids and Supercooled Liquids

    Full text link
    The properties of higher-index saddle points have been invoked in recent theories of the dynamics of supercooled liquids. Here we examine in detail a mapping of configurations to saddle points using minimization of ∣∇E∣2|\nabla E|^2, which has been used in previous work to support these theories. The examples we consider are a two-dimensional model energy surface and binary Lennard-Jones liquids and solids. A shortcoming of the mapping is its failure to divide the potential energy surface into basins of attraction surrounding saddle points, because there are many minima of ∣∇E∣2|\nabla E|^2 that do not correspond to stationary points of the potential energy. In fact, most liquid configurations are mapped to such points for the system we consider. We therefore develop an alternative route to investigate higher-index saddle points and obtain near complete distributions of saddles for small Lennard-Jones clusters. The distribution of the number of stationary points as a function of the index is found to be Gaussian, and the average energy increases linearly with saddle point index in agreement with previous results for bulk systems.Comment: 14 pages, 7 figure

    Landscapes, dynamic heterogeneity and kinetic facilitation in a simple off-lattice model

    Full text link
    We present a simple off-lattice hard-disc model that exhibits glassy dynamics. The inherent structures are enumerated exactly, transitions between metabasins are well understood, and the particle configurations that act to facilitate dynamics are easily identified. The model readily maps to a coarse grained dynamic facilitation description.Comment: 5 pages, 5 figures, submitted to PR

    Coordination motifs and large-scale structural organization in atomic clusters

    Full text link
    The structure of nanoclusters is complex to describe due to their noncrystallinity, even though bonding and packing constraints limit the local atomic arrangements to only a few types. A computational scheme is presented to extract coordination motifs from sample atomic configurations. The method is based on a clustering analysis of multipole moments for atoms in the first coodination shell. Its power to capture large-scale structural properties is demonstrated by scanning through the ground state of the Lennard-Jones and C60_{60} clusters collected at the Cambridge Cluster Database.Comment: 6 pages, 7 figure

    Annoyance of helicopter-like sounds in urban background noise

    Get PDF
    Scenarios of urban air mobility see electric vertical take-off and landing aircraft (eVTOLs) operating within cities. Rotorcraft sounds are typically characterised by short bursts of noise, although eVTOLs offer more opportunities for a quieter sound design. We asked participants to compare the annoyance of a reference sequence of bursts of noise with a burst duration of 20 ms with that of a test sequence for which the burst duration was 1 or 5 ms. There were 20 bursts/s. A two-interval, two-alternative forced-choice task and a 1-up/1-down procedure was used. Both sequences were played in background noise that had either the same root-mean-square (RMS) level as the sequence of bursts or 10 dB less. The results were similar to those for loudness: On average, sequences with 1-ms bursts needed 6-8 dB less RMS level to sound equally annoying as the 20-ms bursts, and sequences with 5-ms bursts needed 2-4 dB less. This suggests that psychoacoustic annoyance is mainly explained by loudness and that the RMS level is an insufficient descriptor. Compared between the two background noise levels, the level difference for equal annoyance between short and 20-ms bursts was 1.5 dB larger in the louder background, which was statistically significant

    Thermodynamics and the Global Optimization of Lennard-Jones clusters

    Full text link
    Theoretical design of global optimization algorithms can profitably utilize recent statistical mechanical treatments of potential energy surfaces (PES's). Here we analyze the basin-hopping algorithm to explain its success in locating the global minima of Lennard-Jones (LJ) clusters, even those such as \LJ{38} for which the PES has a multiple-funnel topography, where trapping in local minima with different morphologies is expected. We find that a key factor in overcoming trapping is the transformation applied to the PES which broadens the thermodynamic transitions. The global minimum then has a significant probability of occupation at temperatures where the free energy barriers between funnels are surmountable.Comment: 13 pages, 13 figures, revte

    The double-funnel energy landscape of the 38-atom Lennard-Jones cluster

    Full text link
    The 38-atom Lennard-Jones cluster has a paradigmatic double-funnel energy landscape. One funnel ends in the global minimum, a face-centred-cubic (fcc) truncated octahedron. At the bottom of the other funnel is the second lowest energy minimum which is an incomplete Mackay icosahedron. We characterize the energy landscape in two ways. Firstly, from a large sample of minima and transition states we construct a disconnectivity tree showing which minima are connected below certain energy thresholds. Secondly we compute the free energy as a function of a bond-order parameter. The free energy profile has two minima, one which corresponds to the fcc funnel and the other which at low temperature corresponds to the icosahedral funnel and at higher temperatures to the liquid-like state. These two approaches show that the greater width of the icosahedral funnel, and the greater structural similarity between the icosahedral structures and those associated with the liquid-like state, are the cause of the smaller free energy barrier for entering the icosahedral funnel from the liquid-like state and therefore of the cluster's preferential entry into this funnel on relaxation down the energy landscape. Furthermore, the large free energy barrier between the fcc and icosahedral funnels, which is energetic in origin, causes the cluster to be trapped in one of the funnels at low temperature. These results explain in detail the link between the double-funnel energy landscape and the difficulty of global optimization for this cluster.Comment: 12 pages, 11 figures, revte
    • …
    corecore