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Transitions between different stable configurations of biomolecules are important in understanding disease mecha-
nisms, structure-function relations, and for novel molecular-scale engineering. The corresponding pathways can be
characterised efficiently using geometry optimisation schemes based on double-ended transition state searches. An
interpolation is first constructed between the known states, and then refined, yielding a band that contains transition
state candidates. Here we analyse an example where various interpolation schemes lead to bands with a single step
transition, but the correct pathway actually proceeds via an intervening, low-energy minimum. We compare a number
of different interpolation schemes for this problem.

We systematically alter the number of discrete images in the interpolations and the spring constants used in the
optimisation, and test two schemes for adjusting the spring constants and image distribution, resulting in a total of
2,760 different connection attempts. Our results confirm that optimised bands are not necessarily a good description of
the transition pathways in themselves, and further refinement to actually converge transition states and establish their
connectivity is required. We see an improvement in the optimised bands if we employ the adjustment of spring constants
with DNEB, and a smaller improvement from the image redistribution. The example we consider is representative of
numerous cases we have encountered in a wide variety of molecular and condensed matter systems.

I. INTRODUCTION

The information necessary to understand the behaviour of
molecular systems is encoded in the underlying potential en-
ergy landscape.1 This fundamental link is of particular in-
terest in biomolecular studies, where the energy landscape
picture provides insight into folding pathways and disease
mechanisms.2–5 Consequently, most simulation studies target,
directly or indirectly, this high-dimensional surface, and aim
to explore it to predict and explain observable properties.

A straightforward approach is provided by computing the
propagation of the system in time using molecular dynamics
(MD). While MD simulations are perhaps the most commonly
used tool in computational studies of biomolecules, it may be
difficult to obtain converged results. The first challenge en-
countered when studying biomolecules is the large number
of degrees of freedom, in common with practically any other
simulation technique applied to molecular biology. Secondly,
biomolecules may exhibit broken ergodicity,6 with high barri-
ers separating structures of interest. Prohibitively large simu-
lation times are then required for standard sampling methods,
which motivates the development of techniques to treat rare
events.7–35

In MD replica exchange36 multiple copies of the system
are propagated at different temperatures, allowing higher tem-
perature replicas to overcome high energy barriers. Other
approaches introduce a bias directly to the potential, to fo-
cus sampling on a specific reaction coordinate (e.g. umbrella
sampling),37 to steer sampling towards unexplored regions
(metadynamics),38 or to facilitate sampling of the state-to-
state evolution (hyperdynamics).39 These methods are often
employed alongside dimensional reduction, which can intro-
duce artefacts into the simulations.10,40–43
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An alternative approach describes the dynamics with a mas-
ter equation,44 either through the description of stationary
points, or reactive pathways.34 Many methods for reactive
pathway sampling exist, for example transition path sampling
(TPS),10,11 transition interface sampling (TIS),14,15 forward
flux sampling,21–23 and milestoning,16 to name but a few.

The direct search for stationary points, i.e. local minima
and transition states, using geometry optimisation, is an al-
ternative that is capable of yielding a full (approximate) de-
scription without the need for dimensionality reduction.1,33,34

This approach is particularly useful in tackling high energy
barriers. While the location of minima is relatively straight-
forward, identifying and converging transition states requires
more careful considerations. A discrete interpolation, such as
the nudged (NEB)45–48 or doubly-nudged (DNEB)49,50 elas-
tic band algorithm, is often used to identify potential candi-
dates, which are subsequently refined using, for example, hy-
brid eigenvector-following.51,52 In this scenario, it is only nec-
essary to optimise the images in the band sufficiently for the
transition state candidates to be good starting points for the
subsequent single-ended searches.49,53

In some reports, the bands are used on their own as a proxy
for the true pathway, or employed to define reactive coordi-
nates for further analysis. Here, we illustrate one example
where the optimised nudged or doubly-nudged elastic bands
are not necessarily sufficient to describe transitions, and con-
verging the transition states properly along with additional
sampling is required. We investigate how the choice of input
parameters can produce physically sensible bands, and how
adjusting the spring constants and redistributing the images
in the optimisation procedure influences the outcomes. We
focus on a single connection attempt, i.e. the initial interpo-
lation, followed by an optimisation to obtain a band, and the
subsequent refinement of transition state candidates.
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II. NUDGED AND DOUBLY-NUDGED ELASTIC BANDS

The NEB45–48 and DNEB49 algorithms add an artificial
spring potential to the true potential to connect a set of dis-
crete images [X1, X2, . . . XN ] between two endpoints, X0 and
XN+1, where Xi is a vector containing the coordinates of im-
age i. The spring potential, Vspr, has the form

Vspr =
1
2

kspr

N+1

∑
i=1
| Xi − Xi−1 |2 . (1)

This approach yields an interpolation between the two end-
points, which can be optimised by minimising the energy of
the entire band, approximating a minimum energy path. How-
ever, this procedure suffers from two problems: the images
tend to slide downhill towards the endpoints, and in addition
the band tends to cut corners.46 Only using certain parts of the
gradient partly mitigates these effects, leading to an effective
gradient45

gNEB = g⊥ + g‖spr. (2)

This approach is the nudged elastic band (NEB) method,
where the component of the true gradient parallel to the path
is removed, and the component of the spring gradient perpen-
dicular to the path is projected out.46,48

In some cases, faster convergence around the images corre-
sponding to local maxima may be achieved by retaining part
of the perpendicular component of the spring gradient, yield-
ing a doubly-nudged elastic band (DNEB)49 with gradient

gDNEB = g⊥ + g‖spr + ĝ⊥ − (g⊥spr · ĝ⊥)ĝ⊥. (3)

In the present work we employ a custom L-BFGS54,55 min-
imiser for both NEB and DNEB, with all images optimised
simultaneiously. The optimisation was terminated when the
RMS force on the band is below 10−3 kcal mol−1 Å−1, or
4000 minimisation steps had been taken. We chose a large
L-BFGS history size (1000 steps), as we did not attempt to
optimise run times.

A. Quasi-continuous interpolation

Any interpolation scheme may be chosen to create the ini-
tial set of discrete images, and a linear interpolation is of-
ten sufficient for simple mechanisms. However, for complex
structural rearrangements of biomolecules, unphysical chain
crossings can arise from the use of discrete images. This
problem can be mitigated using quasi-continuous interpola-
tion (QCI),56,57 which retains a discrete representation of the
pathway.

QCI employs a simple auxiliary potential, containing at-
tractive constraints and Coulombic repulsions with a relatively
short cutoff for interactions. The attractive constraints (bonds)
can easily be identified for biomolecules based on sequence,
and further constraints, to preserve chirality and prevent cis-
trans isomerism, can be added. The key feature of the aux-
iliary potential is the final component, a repulsive term for

any local minima in the distance between pairs of atoms in
adjacent images. This repulsion corresponds to the worst-
case energetic contribution, which helps to prevent chain-
crossing, and represents the quasi-continuous part of the po-
tential. The details of the interpolation may be found in pre-
vious reports,56,57 where we have shown that it can produce a
more physical, low-energy set of images.

B. Internal coordinate interpolations

Internal coordinate transformations can sometimes produce
better initial guess interpolations for anisotropic potentials
with bond angle and dihedral angle terms,58 as they reduce
higher order coupling between coordinates.59,60 Furthermore,
the use of internal coordinates permits larger optimisation
steps, but the additional coordinate transforms required can
make the overall procedure less efficient. Previous work
showed that an efficiency gain is possible for smaller peptides,
while for large systems Cartesian coordinates are faster.61 We
tested these internal coordinates schemes in the present work,
to assess their capability to help with pathways that exhibit
internal minima and very different energy scales.

C. Redistribution of images and adjusting the spring
constant

One straightforward adaption of the NEB and DNEB algo-
rithms is to correct the image spacing at intervals during the
optimisation. As nudging does not guarantee a good spacing
between images, subtle features on the pathway may not be
represented well in a single interpolation. Clearly, repeated
connection attempts between newly discovered local minima
should eventually yield a connected path, but improved initial
interpolations may provide a more efficient solution.

In selected runs we tested redistribution of the images at
regular intervals in the NEB or DNEB refinement. The Eu-
clidean distance between successive images was calculated,
and the images were redistributed by simply shifting them
along the straight line segments to give equal distances along
the original interpolation.

We also adjusted the spring constant in some NEB and
DNEB runs throughout the band refinement. The OPTIM pro-
gram includes alternative schemes for dynamic spring con-
stant adjustment. One of these increases or decreases kspr
by a small fraction depending on whether the standard devia-
tion of the image separation relative to the average is above
or below a specified tolerance. However, we found that a
schedule specifying initial (larger) and final (smaller) values
of kspr with a steady decrease determined by the maximum
number of refinement iterations, worked better for the prob-
lem in question. All the results we present below are based
on this protocol. We note that alternative procedures based
on NEB and comparisons with other schemes have also been
presented before.62–66 In the present report we focus on the
NEB and DNEB schemes, which probably account for most
transition state and pathway investigations in the literature.
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TABLE I: The five stationary points forming the target
discrete path for the τ peptide. The endpoints used for

starting the interpolation algorithms are Min 1 and Min 3.

Stationary point E (kcal/mol−1) F (kcal/mol−1)a

Min 1 -1038.604929(2) 1.506143(2)
TS 1 -1037.031021(2) 2.942694(4)
Min 2 -1040.994529(3) 0.000000(0)
TS 2 -1036.440185(1) 2.314330(3)
Min 3 -1037.169948(0) 1.658213(7)

a Free energies calculated at 310 K within the harmonic superposition
approximation; all values are relative to the lowest energy stationary point
(Min 2).

III. SYSTEM SETUP

We have observed problems with pathways involving mul-
tiple steps and widely different barriers in previous work for
atomic and molecular clusters, proteins, nucleic acids, coarse-
grained models of mesoscopic systems, and in condensed
matter. The difficulties that arise when trying to describe bar-
riers on different energy and length scales in the same inter-
polation seem to be generic, and we have therefore analysed
one representative system in detail. The choice of a peptide
enabled us to compare additional initial interpolation schemes
that exploit internal coordinates, to see if these offer any ad-
vantage in a case where they appear to be well suited to de-
scribing the motion in question.

A. A two-step peptide rearrangement

The example we have chosen to illustrate the issue with
interpolation for rearrangements involving intermediate min-
ima is for a τ protein peptide fragment of 446 atoms with a
27 amino acid sequence (N to C) KVQII-NKKLD-LSNVQ-
SKCGS-KDNIK-HV.

The pathway in question is a rearrangement of the N-
terminal lysine via a rotation of the side chain, which in-
volves a low-energy intermediate minimum. The shortest dis-
crete pathway contains only three minima, which are shown
in Fig. 1, and the potential and (harmonic) free energies of all
stationary points on this discrete path are given in Table I. The
initial distance between minimum 1 and minimum 3 is 5.77 Å
after optimal spatial and permutational alignment,67 and the
shortest discrete path has a length of 22.50 Å (11.51 Å be-
tween minima 1 and 2, and 10.99 Å between minima 2 and
3).

B. Simulation setup

We used the NEB and DNEB implementations in the
OPTIM68 program to connect the two endpoints. The set of
simulations included four different sets for NEB and DNEB

TABLE II: Parameters used in the DNEB and NEB runs. In
each case only one iteration was allowed for the

double-ended search, with up to 4000 minimisation steps for
the band optimisation and a convergence criterion of

0.001 kcal mol−1 Å−1.

Variable Values used

Number of images 21, 31, 41, 51, 76, 101,
126, 151, 176, 201, 226, 251

kspr (DNEB + NEB) 1.0×101, 5.0×101, 1.0×102,
5.0×102, 1.0×103, 5.0×103, 1.0×104

Final kspr
ab (DNEB + NEB) 1.0×101, 5.0×10−1, 1.0×10−1,

5.0×10−2, 1.0×10−2, 1.0×10−3

kspr (QCI) 1.0×101, 5.0×101, 1.0×102,
5.0×10−1, 1.0×10−1, 5.0×10−2

Final kspr
b (QCI) 1.0×101, 5.0×10−1, 1.0×10−1,

5.0×10−2, 1.0×10−2, 1.0×10−3

a kspr is lowered in consecutive steps and the final values is the minimum
value allowed. This procedure slowly moves the system towards the true
potential.

b For each initial value of the spring constant, only values for the final
spring constant were used that are smaller than the initial value.

formulations: (set 1) an initial linear interpolation, with redis-
tribution of the images and adjustment of the spring constant;
(set 2) with only the redistribution; (set 3) with only the ad-
justment; (set 4) without redistribution or adjustment. We fur-
ther tested QCI as a different initial interpolation, followed by
optimisation using the DNEB gradient (QCI+DNEB), includ-
ing runs with image redistribution and spring constant adjust-
ments. The QCI+DNEB simulations also employ springs to
keep the images connected, with a separate spring constant pa-
rameter. We chose to use the value at the end of the QCI pro-
cess as the initial value for the DNEB band optimisation. This
choice limits the useful range of spring constants somewhat,
but is self-consistent. In addition, we tested initial internal co-
ordinate interpolations with DNEB, as described below. We
used the ff14SB force field69 with implicit solvent (igb2)70–72

in AMBER1273 throughout. For the QCI+DNEB runs, cis-
trans constraints were employed.57 The different sets of sim-
ulation parameters, namely the number of images for the in-
terpolation, and the spring constants employed, are given in
Table II.

For the internal coordinate interpolations the following op-
tions were tested. An interpolation in natural internal coor-
dinates was used, with and without permutational alignment
of torsional angles, and the interpolation images were ini-
tially placed at equal separations along the arclength. Another
set of connections with permutational alignment of the tor-
sions was considered, where the internal coordinate images
are used directly in the band optimisation, without attempting
to space them equally along the path. Additionally, we con-
sidered connections where both a Cartesian and an internal co-
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(a) Minimum 1 (b) Minimum 2 (c) Minimum 3

FIG. 1: The three minima on the target discrete path considered in this study. The transition involves a rotation of the side chain
of the N-terminal Lys1 (green), losing contact with Gln3 (blue). The contact with the C-terminal Val27 (purple) remains
throughout, and the intermediate minimum stabilises the transition through a new contact formed between Lys1 and the

backbone of Lys25 (orange).

ordinate interpolation were constructed and the lower energy
band was then chosen. Detailed descriptions of these schemes
can be found elsewhere.58,61 Our tests did not reveal any sig-
nificant advantage for initial internal coordinate interpolation.
Furthermore, previous work indicates the computational costs
are higher than for Cartesian coordinates, especially for larger
systems. We therefore omit details of these calculations for
brevity.

IV. RESULTS AND DISCUSSION

In total, we ran 2,760 connection attempts, each lim-
ited to one doubled-ended search, with 1,152 runs for both
DNEB and NEB, and another 456 using QCI and DNEB
(QCI+DNEB). The NEB/DNEB runs each include 84 tests
with a fixed spring constant for runs with (set 3) and with-
out (set 4) redistributing the images, and 492 tests adjusting
the spring constants with (set 1) and without (set 2) image
redistribution. For QCI+DNEB, we tested 72 parameter com-
binations without spring constant adjustments, with and with-
out redistributing images, and another 312 runs adjusting the
spring constant, but without redistribution. We allowed for
a maximum wall time of 6 days for every calculation (with
the fastest runs completing in 30 minutes on a single core on
a six-core dual Xeon X5650 (2.6GHz) processor),74 meaning
that we allowed runs to complete that were up to 288× slower
than the fastest ones. All DNEB and all QCI+DNEB runs
finished well within this window, however, eight of the NEB
attempts did not, and are therefore excluded from the analysis.

Broadly speaking, the results for the interpolation attempts
fall into two categories: in the first set, we observe a band
with a single transition state candidate, and subsequent refine-
ment therefore only leads to one transition state. In the second
set, more candidates are found, usually in much longer inter-
polations, and a single cycle can produce a complete discrete
path between the endpoints. Two example bands are shown
in Fig. 2. We note that the band shown in red includes a rel-

0 10 20 30 40 50 60

−1041

−1039

−1037

FIG. 2: Comparison of two different interpolations using
DNEB after convergence or the iteration limit is reached,

with the band length (sum of segments) in Å on the
horizontal axis, while the vertical axis is the potential energy
in kcal/mol−1. In the first set of results, we see a short band

(approx. 8 Å) with only a single maximum (blue). In the
second set, the band (red) is much longer (around 55 Å) and it
contains an intervening low-energy state with transition state
candidates on either side. 251 images were used in both runs,

with an initial spring constant of 5.0×103 kcal mol−1 Å−2.
For the short blue band, no redistribution or spring

adjustments were allowed. For the longer band, the images
were redistributed and the spring constant allowed to relax to

a final value of 5.0×10−3 kcal mol−1 Å−2.

atively flat region at the beginning, likely due to an overall
rotation that results from the initial alignment. If this motion
were removed, the band would nevertheless be much longer.

For the computations returning only a single transition
state, we observe a short interpolation path, with relatively lit-
tle change compared to the initial interpolation, and only one
maximum in the profile. However, in the bands that locate
more transition states, even if they start from similar interpo-
lations (compare Fig. 2 with the top panel Fig. 3), the band
stretches and more features appear, as shown in Fig. 3.

A. DNEB interpolations

In the four different sets of calculations, we only obtain
fully connected paths when either the images are redistributed
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FIG. 3: Evolution of the band for a DNEB run with
redistribution of images every hundred steps, showing the
slowly increasing length of the band and the location of an

additional internal minimum emerging. The run shown is the
red band from Fig. 2, i.e. 251 images with redistributions and

spring constant adjustment.

and the spring constant is adjusted, or if only the spring con-
stant is altered. For the former set there are 173 successful
attempts, and for the latter, 8. Clearly, adjusting the spring
constant, allowing the path to gradually extend, helps to pro-
duce a better representation of the shortest discrete path in the
interpolation, and this approach can be improved by additional
redistribution of images, which on its own is not as effective.
We observe no runs with more than one transition state lo-
cated in the other two sets (2 and 4), and the final length of
the interpolations is very similar (set 2: 8.56 ± 2.43 Å; set 4:
8.50± 2.37 Å). Unsuccessful runs in the other two sets, where
no complete discrete path between the endpoints was found,
can also exhibit relatively long paths, and multiple transition
states are located for a number of them. Overall, 282 attempts
in set 1 and 174 for set 3 located more than one transition state,
with the maximum number being 29 and 27, respectively. The
average numbers are 8.4 ± 5.9 and 3.8 ± 3.1 transition states
for set 1 and set 3 for the connection attempts that locate more
than one transition state. This increase in the number of sta-
tionary points is correlated with the length of the final interpo-
lation, with an average value for set 1 of 30.9 Å, and 22.9 Å in
set 3. In both cases the maximum sum of distances between
successive images was greater than 100 Å. While it is nec-
essary to have a longer path than the initial, linear distance
between the minima, if the band becomes too long, it mean-
ders around the actual region of interest. While this behaviour
is undesirable for initial connection attempts to create a net-
work, it may provide an interesting alternative for additional
sampling at later stages of the landscape exploration.

1. Key parameters for successful DNEB interpolations

From these results we see that dynamic adjustment of the
spring constant, which allows for longer paths, significantly
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FIG. 4: An overview of the successful (left) and unsuccessful
attempts using DNEB (right) for sets 1 (top) and 3 (bottom),
for the various initial (y-axis) and final (x-axis) for the spring
constant. The size of each data point represents the squared
number of attempts with the given parameters. We see that a
large ratio of final to initial spring constants helps to produce

successful connection attempts.

improves the performance of the double-ended searches. This
observation indicates that it takes a longer interpolation with
enough images to follow the actual path accurately enough to
identify some of the stationary points. The first lesson to be
learnt is that an interpolation path may not be a good repre-
sentation of the required pathway between structures, even if
it appears to be converged. Missing features, especially low-
lying internal minima, could have significant effects on ob-
servable properties, especially predictions of interconversion
rates.

While the resulting trends are clear, there is a further ques-
tion, namely, which parameter variations are actually key to
producing successful runs. We divide sets 1 and 3 into two
subsets, each with the successful runs in one, and the unsuc-
cessful attempts in the other. As the three input parameters are
the initial and the final spring constants, as well as the number
of images allowed in the interpolation, we can first of all test
for differences in these parameters between the subsets.

In both sets 1 and 3, we observe that the initial spring con-
stant is larger in the successful runs. However the differences
are small, and, apart from the lowest value for the initial spring
constant in set 3, we observe the full range of values in the
successful and unsuccessful runs.

In contrast, the average final spring constant in the success-
ful subsets is about two orders of magnitude smaller, and only
the smaller values of the final spring constant resulted in suc-
cessful connection attempts. These trends are illustrated in
Fig. 4, showing that for larger final values of the spring con-
stant, only a small number of attempts are successful. Re-
distribution of the images, in addition to spring adjustments,
allows for smaller differences between the initial and final val-
ues, both with smaller initial and larger final values, compared
to no redistribution of images.

The number of images is also important. However, it is in-
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teresting that a good choice of values for the initial and final
spring constants allows for interpolations with a smaller num-
ber of images to be successful as well (see Fig. 5). This is
a useful observation, because a high image density requires
a significant amount of memory for large systems, especially
when a long history length is desirable in the LBFGS proce-
dure.

2. Quasi-continuous interpolation

For QCI+DNEB, we only considered parameter sets 2, 3
and 4; and obtained the full discrete path for 10 runs in set 2
and for 19 attempts in set 3. Again, no attempt was success-
ful without using image redistribution or adjustments to the
spring constant. In contrast to DNEB with a linear interpo-
lation, we obtained successful connections for set 2, but the
fraction of successful attempts in set 2 and set 3 using QCI is
lower than for sets 1 and 3 with DNEB alone (0.14 and 0.06
vs. 0.35 and 0.18). As we started the QCI+DNEB runs with a
set of smaller initial values for the spring constant this obser-
vation is in line with the observations above. The average path
length for all sets increases compared to DNEB with a linear
interpolation (set 2: 21.3 Å, set 3: 23.2 Å, set 4: 13.6 Å).

Looking more closely at the subsets of successful and un-
successful runs for sets 2 and 3, enables us to identify trends,
as above. For set 3, we find again that lower final values for
the spring constant are more likely to result in successful con-
nection attempts. However, not only large differences in the
initial and final values, but also the smallest possible differ-
ences in the spring constants, can result in full discrete paths.
As the construction of the interpolation in QCI contains an ad-
justment of the spring constants as well, we see that a larger
spring constant adjustment is required for flexibility, but this
adjustment can occur in the initial stages when the interpo-
lation is constructed, or during the band optimisation. This
point is supported by the fact that for the runs with image
redistribution and fixed spring constant, we only observe suc-
cessful attempts for the smallest values of the spring constant.
Furthermore, the tendency for successful runs to have a larger
number of images is again observed, but the better the choice
of values for the spring constant, the smaller the number of
images can be. Both these features are shown in Fig. 6.

B. NEB interpolations

Using the NEB gradient, we obtain a different picture from
DNEB. Runs with spring constant adjustments were all unsuc-
cessful, and, in contrast, there were 51 successful attempts for
set 4 and 31 for set 2. The number of transition states found is
higher than for DNEB for the successful interpolations, with
16.6± 12.1 for set 2 and 9.3± 6.3 for set 4. The average
path length is also significantly increased (set 2: 77.1 Å, set
4: 53.7 Å) with a maximum length of over 300 Å. If we allow
for a redistribution of images, the value of the spring constant
is not significant, but a larger number of images increases the
chance of success. If the images are not redistributed the op-

posite trend is observed, and the number of images is less sig-
nificant, but a lower spring constant is more likely to result in
a connected path.

Clearly, the different projections of the gradient affect the
paths significantly, and also the possibilities for improve-
ments. One observation emerging from this analysis is that
the NEB bands are longer than DNEB bands, as expected from
the additional gradient components in the DNEB formulation.
While this feature can improve the interpolation, it also sig-
nificantly increases the computational time required. It also
highlights that the actual interpolation obtained may deviate
from true discrete paths, and depends significantly on the sim-
ulation parameters used.

V. CONCLUSION

In this study we have investigated the nudged and doubly-
nudged elastic band interpolations, and their dependence on
input parameters, in characterising the path between two lo-
cal minima for a peptide with 27 residues. The first impor-
tant conclusion is that the resulting interpolation bands de-
pend strongly on the input parameters, and may not reproduce
all the transition states and local minima on the path.

For the DNEB interpolations we find that systematically de-
creasing the spring constants during the refinement process
helps to improve the final band, gradually lowering the spring
component of the total energy. This scheme can be further im-
proved when the images are periodically redistributed along
the segments of the interpolation band between successive im-
ages. The number of images is less important if a large initial
and a small final value of the force constant are used, allowing
for a reduced memory requirement.

The use of quasi-continuous interpolation56,57 with DNEB
provides an alternative way to find fully connected paths ef-
fectively. Importantly, the use of QCI+DNEB not only yields
lower energy paths, as previously reported,57 but in addition,
spring adjustment from a large initial to a small final value
improves the results.

Finally, we observe that NEB interpolations do not seem to
benefit from these adjustments, as the gradient is constructed
differently. To improve the interpolations a longer path is
desirable, allowing for the location of all relevant stationary
points. Such a path may be achieved using smaller values for
the spring constants or a larger number of images.

Overall, we note that a careful adjustment of input pa-
rameters can significantly improve double-ended interpolation
schemes, but the interpolations themselves do not necessarily
represent the structural transitions faithfully. We recommend
that NEB or DNEB interpolations are optimised until the lo-
cal maxima are clear.49,53 These images should then be used
as starting points for accurate single-ended refinement using
hybrid eigenvector-following,51,52 and the connectivity should
be checked by calculating approximate steepest-descent paths.
If a complete connection does not result, the procedure can be
repeated using the missing connection algorithm75 to select
new pairs of minima to connect.

Finally, it is also important to realise that a successful ini-
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FIG. 5: Summary of the effect of variations in the spring constant and the number of images for test sets 1 and 3 for the DNEB
simulations. The coloured wheels represent the different number of images going clockwise from lowest (first sector, 12 to 1

o’clock, 21 images) up to the highest number (11 to 12 o’clock, 251 images). We see that a larger number of images is
especially useful if the change in the spring constants is small.

tial connected path may be kinetically irrelevant. For complex
transitions, involving tens or hundreds of transition states, the
initial path is simply a starting point for refinement of a kinetic
transition network (KTN).43,76–78 The discrete path sampling
approach12,13 subsumes a variety of procedures designed to
converge79 the phenomenological rate constant of interest be-
tween specified product and reactant states. For example, the
PATHSAMPLE program80 includes schemes that aim to reduce
path length, locate lower barrier paths, and remove artificial
kinetic traps in the network.75,81,82 All of these procedures
are based on double-ended searches, analogous to the initial
pathway search, but with different target endpoint minima.
All the stationary points found in unsuccessful connection at-
tempts can be added to the database, and employed in the
next round of searches, where the gaps that may need to be
bridged should be smaller. One of the longest pathways we
have addressed, involving conformational changes associated
with membrane fusion in influenza A haemagglutinin, initially
required over 4,500 transition states. On database refinement,
which we will describe elsewhere, the fastest pathways in-
volve around 3,500 steps. Our observation is that initial paths
with a few hundred transition states or more usually become
at least 25% shorter (and much faster) on database refinement.
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