18 research outputs found

    RTDF2007-46016 ONBOARD LOCOMOTIVE EXHAUST EMISSIONS MEASUREMENT

    Get PDF
    ABSTRACT Limiting harmful locomotive exhaust emissions is important to the Nation's health and safety. The Environmental Protection Agency (EPA) has comprehensive gaseous exhaust emissions (or referred to as emissions hereto) testing requirements in place. All current tests are conducted on stationary locomotives. This paper discusses the development of an efficient stationary emissions measurement system that is compact, portable, easy to use, and applicable to onboard locomotives for in-use, over-the-road testing. More efficient locomotive emissions testing and better understanding of in-use emissions would be beneficial to all stakeholders. Sharma & Associates, Inc., (SA) adapted an off-the-shelf, portable, on-road, heavy-duty diesel truck emissions analyzer for locomotive use. This process included development of the necessary peripheral equipment and a computer program to take the raw emissions and report them as brake-specific emissions rates and duty cycle emissions. This paper describes the use of this system on a stationary locomotive. The system is currently being fitted and tested for over-the-road use. The measurement of particulate matter and smoke opacity were out of scope of the phase of the project that this paper is based on and not addressed hereto

    A cryptic pocket in Ebola VP35 allosterically controls RNA binding

    Get PDF
    Protein-protein and protein-nucleic acid interactions are often considered difficult drug targets because the surfaces involved lack obvious druggable pockets. Cryptic pockets could present opportunities for targeting these interactions, but identifying and exploiting these pockets remains challenging. Here, we apply a general pipeline for identifying cryptic pockets to the interferon inhibitory domain (IID) of Ebola virus viral protein 35 (VP35). VP35 plays multiple essential roles in Ebola\u27s replication cycle but lacks pockets that present obvious utility for drug design. Using adaptive sampling simulations and machine learning algorithms, we predict VP35 harbors a cryptic pocket that is allosterically coupled to a key dsRNA-binding interface. Thiol labeling experiments corroborate the predicted pocket and mutating the predicted allosteric network supports our model of allostery. Finally, covalent modifications that mimic drug binding allosterically disrupt dsRNA binding that is essential for immune evasion. Based on these results, we expect this pipeline will be applicable to other proteins

    Solvent-Free Melting Techniques for the Preparation of Lipid-Based Solid Oral Formulations

    Get PDF

    A Proof of Concept for 3D Printing of Solid Lipid-Based Formulations of Poorly Water-Soluble Drugs to Control Formulation Dispersion Kinetics

    No full text
    PURPOSE: The use of three-dimensional printing (3DP) in the development of pharmaceutical dosage forms is growing rapidly. However, the research is almost exclusively focussed on polymer-based systems with very little reported on 3D printing of lipid-based formulations. Thus, the aim of the work was to explore the feasibility of 3DP technology to prepare solid lipid-based formulations. Here, 3DP was applied for the preparation of solid self-microemulsifying drug delivery systems (S-SMEDDS) with defined surface area to volume (SA/V) ratios. METHODS: The S-SMEDDS formulations, comprised of Gelucire® 44/14, Gelucire® 48/16 and Kolliphor® P 188 were loaded with fenofibrate or cinnarizine as model drugs. The formulations were printed into four geometrical shapes - cylindrical, prism, cube and torus, and compared to a control cube manually prepared from bulk formulation. RESULTS: The printing process was not significantly affected by the presence of the model drugs. The as-printed S-SMEDDS formulations were characterised using differential scanning calorimetry and wide-angle X-ray scattering. The kinetics of dispersion depended on the SA/V ratio values. The digestion process was affected by the initial geometry of the dosage form by virtue of the kinetics of dispersion of the dosage forms into the digestion medium. CONCLUSIONS: This proof of concept study has demonstrated the potential of 3DP for the development of customised S-SMEDDS formulations without the need for an additional carrier or additive and with optimisation could elaborate a new class of dosage forms based on 3D printed lipids. Graphical abstract Lipid based formulations were 3D printed in various shapes to control the surface are to volume ratio and consequently the kinetics of dispersion

    Diclofenac sodium sustained release hot melt extruded lipid matrices

    No full text
    Sustained release diclofenac sodium (Df-Na) solid lipid matrices with Compritol® 888 ATO were developed in this study. The drug/lipid powders were processed via cold and hot melt extrusion at various drug loadings. The influence of the processing temperatures, drug loading and the addition of excipients on the obtained dissolution rates was investigated. The physicochemical characterization of the extruded batches showed the existence of crystalline drug in the extrudates with a small amount being solubilized in the lipid matrix. The drug content and uniformity on the tablet surface were also investigated by using energy dispersive X-ray microanalysis. The dissolution rates were found to depend on the actual Df-Na loading and the nature of the added excipients, while the effect of the processing temperatures was negligible. The dissolution mechanism of all extruded formulations followed Peppas–Korsemeyer law, based on the estimated determination coefficients and the dissolution constant rates, indicating drug diffusion from the lipid matrices

    Sustained release solid lipid matrices processed by hot-melt extrusion (HME)

    No full text
    The aim of this work was to develop sustained release solid lipid matrices of diclofenac sodium (Df-Na) processed by hot melt extrusion (HME) and subsequent compression into tablets. Different extrusion processing approaches such as “cold”, “hot” and pre-mixed formulations were used to develop the Compritol® 888 ATO lipid matrices by altering the extrusion temperatures, drug loading and formulation composition. The extrudates were characterized via a range of techniques such as differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) to identify the drug state within the lipid matrix. Df-Na was found to be either in crystalline or amorphous state depending on the processing conditions. Energy dispersive X-ray (EDX) microanalysis demonstrated excellent drug distribution of Df-Na on the surface of the compressed tablets. The lipid matrices developed by HME provided sustained release of pre-mixed formulations for 12 h mainly controlled by diffusion

    Development of sustained-release formulations processed by hot-melt extrusion by using a quality-by-design approach

    No full text
    In this study, a quality-by-design (QbD) approach was used to optimize the development of paracetamol (PMOL) sustained-release formulations manufactured by hot-melt extrusion (HME). For the purpose of the study, in-line near-infrared (NIR) spectroscopy as a process analytical technology (PAT) was explored while a design of experiment (DoE) was implemented to assess the effect of the process critical parameters and to identify the critical quality attributes (CQA) of the extrusion processing. Blends of paracetamol, ethyl cellulose (EC) and Compritol® 888 ATO (C888) were processed using a twin screw extruder to investigate the effect of screw speed, feed rate and drug loading on the dissolution rates and particle size distribution. The principal component analysis (PCA) of the NIR collected signal revealed the optimum extrusion processing parameters. Furthermore, the integration of the DoE experiments demonstrated that drug loading has a significant effect on the only quality attribute, which was the PMOL dissolution rate. This QbD approach was employed as a paradigm for the development of pharmaceutical formulations via HME processin

    An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems

    No full text
    Purpose: Three-dimensional printing (3DP) is a rapidly growing additive manufacturing process and it is predicted that the technology will transform the production of goods across numerous fields. In the pharmaceutical sector, 3DP has been used to develop complex dosage forms of different sizes and structures, dose variations, dose combinations and release characteristics, not possible to produce using traditional manufacturing methods. However, the technology has mainly been focused on polymer-based systems and currently, limited information is available about the potential opportunities for the 3DP of soft materials such as lipids. / Methods: This review paper emphasises the most commonly used 3DP technologies for soft materials such as inkjet printing, binder jetting, selective laser sintering (SLS), stereolithography (SLA), fused deposition modeling (FDM) and semi-solid extrusion, with the current status of these technologies for soft materials in biological, food and pharmaceutical applications. / Result: The advantages of 3DP, particularly in the pharmaceutical field, are highlighted and an insight is provided about the current studies for lipid-based drug delivery systems evaluating the potential of 3DP to fabricate innovative products. Additionally, the challenges of the 3DP technologies associated with technical processing, regulatory and material issues of lipids are discussed in detail. / Conclusion: The future utility of 3DP for printing soft materials, particularly for lipid-based drug delivery systems, offers great advantages and the technology will potentially support patient compliance and drug effectiveness via a personalised medicine approach
    corecore