20 research outputs found

    Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy

    Get PDF
    OBJECTIVE To expand the clinical phenotype of autosomal dominant congenital spinal muscular atrophy with lower extremity predominance (SMA-LED) due to mutations in the dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) gene. METHODS Patients with a phenotype suggestive of a motor, non-length-dependent neuronopathy predominantly affecting the lower limbs were identified at participating neuromuscular centers and referred for targeted sequencing of DYNC1H1. RESULTS We report a cohort of 30 cases of SMA-LED from 16 families, carrying mutations in the tail and motor domains of DYNC1H1, including 10 novel mutations. These patients are characterized by congenital or childhood-onset lower limb wasting and weakness frequently associated with cognitive impairment. The clinical severity is variable, ranging from generalized arthrogryposis and inability to ambulate to exclusive and mild lower limb weakness. In many individuals with cognitive impairment (9/30 had cognitive impairment) who underwent brain MRI, there was an underlying structural malformation resulting in polymicrogyric appearance. The lower limb muscle MRI shows a distinctive pattern suggestive of denervation characterized by sparing and relative hypertrophy of the adductor longus and semitendinosus muscles at the thigh level, and diffuse involvement with relative sparing of the anterior-medial muscles at the calf level. Proximal muscle histopathology did not always show classic neurogenic features. CONCLUSION Our report expands the clinical spectrum of DYNC1H1-related SMA-LED to include generalized arthrogryposis. In addition, we report that the neurogenic peripheral pathology and the CNS neuronal migration defects are often associated, reinforcing the importance of DYNC1H1 in both central and peripheral neuronal functions

    To continue or not to continue? Antipsychotic medication maintenance versus dose-reduction/discontinuation in first episode psychosis: HAMLETT, a pragmatic multicenter single-blind randomized controlled trial

    Get PDF
    BACKGROUND: Antipsychotic medication is effective for symptomatic treatment in schizophrenia-spectrum disorders. After symptom remission, continuation of antipsychotic treatment is associated with lower relapse rates and lower symptom severity compared to dose reduction/discontinuation. Therefore, most guidelines recommend continuation of treatment with antipsychotic medication for at least 1 year. Recently, however, these guidelines have been questioned as one study has shown that more patients achieved long-term functional remission in an early discontinuation condition-a finding that was not replicated in another recently published long-term study. METHODS/DESIGN: The HAMLETT (Handling Antipsychotic Medication Long-term Evaluation of Targeted Treatment) study is a multicenter pragmatic single-blind randomized controlled trial in two parallel conditions (1:1) investigating the effects of continuation versus dose-reduction/discontinuation of antipsychotic medication after remission of a first episode of psychosis (FEP) on personal and social functioning, psychotic symptom severity, and health-related quality of life. In total 512 participants will be included, aged between 16 and 60 years, in symptomatic remission from a FEP for 3-6 months, and for whom psychosis was not associated with severe or life-threatening self-harm or violence. Recruitment will take place at 24 Dutch sites. Patients are randomized (1:1) to: continuation of antipsychotic medication until at least 1 year after remission (original dose allowing a maximum reduction of 25%, or another antipsychotic drug in similar dose range); or gradual dose reduction till eventual discontinuation of antipsychotics according to a tapering schedule. If signs of relapse occur in this arm, medication dose can be increased again. Measurements are conducted at baseline, at 3, and 6 months post-baseline, and yearly during a follow-up period of 4 years. DISCUSSION: The HAMLETT study will offer evidence to guide patients and clinicians regarding questions concerning optimal treatment duration and when to taper off medication after remission of a FEP. Moreover, it may provide patient characteristics associated with safe dose reduction with a minimal risk of relapse. TRIAL STATUS: Protocol version 1.3, October 2018. The study is active and currently recruiting patients (since September 2017), with the first 200 participants by the end of 2019. We anticipate completing recruitment in 2022 and final assessments (including follow-up 3.5 years after phase one) in 2026. TRIAL REGISTRATION: European Clinical Trials Database, EudraCT number 2017-002406-12. Registered 7 J

    Production of Bio-Ethanol from Beech Wood Pellets via Mild Acetone Organosolv Fractionation

    No full text
    Advanced biofuels are produced from renewable resources that comply with stringent sustainability criteria, and lower GHG emissions than fossil fuels. In the BECOOL/BioValue EU-Brazil cooperation project, novel value chains for advanced bioethanol are developed. Second generation (2G) bio-ethanol represents the most important advanced biofuel from sugar streams, but its production costs are higher than those of other fuels, and innovations are needed to improve efficiency and economics of the process. In this work, beech wood pellets were treated using the FABIOLATM technology, an acetone-based low-temperature organosolv fractionation process. This fractionation results in three main product streams: lignin, a high-purity cellulosic pulp and hemicellulose sugars in solution. The cellulosic pulp was enzymatically hydrolysed producing a glucose-rich (C6) stream and the hemicellulose sugar solution (C5) is conditioned for further biological conversion. The C6 and C5 streams obtained were used for fermentation by the yeasts Saccharomyces cerevisiae and Spathaspora passalidarum, respectively. While the C6 stream was readily fermentable, the C5 stream was only fermentable after dilution. Therefore the C5 stream was subjected to detoxification by activated carbon. Detoxified C5 streams showed higher fermentability and the production of bio-ethanol reached approximately 0.3 g bio-ethanol/gram xylose consumed. Fermentation experiments at 10-L scale confirmed the results obtained at laboratory scale. Combining FABIOLATM and detoxification resulted in efficient C6 and C5 utilization for bio-ethanol production

    Cortical Pathology in Vanishing White Matter

    No full text
    Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies

    Cortical Pathology in Vanishing White Matter

    No full text
    Vanishing white matter (VWM) is classified as a leukodystrophy with astrocytes as primary drivers in its pathogenesis. Magnetic resonance imaging has documented the progressive thinning of cortices in long-surviving patients. Routine histopathological analyses, however, have not yet pointed to cortical involvement in VWM. Here, we provide a comprehensive analysis of the VWM cortex. We employed high-resolution-mass-spectrometry-based proteomics and immunohistochemistry to gain insight into possible molecular disease mechanisms in the cortices of VWM patients. The proteome analysis revealed 268 differentially expressed proteins in the VWM cortices compared to the controls. A majority of these proteins formed a major protein interaction network. A subsequent gene ontology analysis identified enrichment for terms such as cellular metabolism, particularly mitochondrial activity. Importantly, some of the proteins with the most prominent changes in expression were found in astrocytes, indicating cortical astrocytic involvement. Indeed, we confirmed that VWM cortical astrocytes exhibit morphological changes and are less complex in structure than control cells. Our findings also suggest that these astrocytes are immature and not reactive. Taken together, we provide insights into cortical involvement in VWM, which has to be taken into account when developing therapeutic strategies
    corecore