109 research outputs found
Efficiency of Free Energy Transduction in Autonomous Systems
We consider the thermodynamics of chemical coupling from the viewpoint of
free energy transduction efficiency. In contrast to an external
parameter-driven stochastic energetics setup, the dynamic change of the
equilibrium distribution induced by chemical coupling, adopted, for example, in
biological systems, is inevitably an autonomous process. We found that the
efficiency is bounded by the ratio between the non-symmetric and the
symmetrized Kullback-Leibler distance, which is significantly lower than unity.
Consequences of this low efficiency are demonstrated in the simple two-state
case, which serves as an important minimal model for studying the energetics of
biomolecules.Comment: 4 pages, 4 figure
Information heat engine: converting information to energy by feedback control
In 1929, Leo Szilard invented a feedback protocol in which a hypothetical
intelligence called Maxwell's demon pumps heat from an isothermal environment
and transduces it to work. After an intense controversy that lasted over eighty
years; it was finally clarified that the demon's role does not contradict the
second law of thermodynamics, implying that we can convert information to free
energy in principle. Nevertheless, experimental demonstration of this
information-to-energy conversion has been elusive. Here, we demonstrate that a
nonequilibrium feedback manipulation of a Brownian particle based on
information about its location achieves a Szilard-type information-energy
conversion. Under real-time feedback control, the particle climbs up a
spiral-stairs-like potential exerted by an electric field and obtains free
energy larger than the amount of work performed on it. This enables us to
verify the generalized Jarzynski equality, or a new fundamental principle of
"information-heat engine" which converts information to energy by feedback
control.Comment: manuscript including 7 pages and 4 figures and supplementary material
including 6 pages and 8 figure
Brownian Carnot engine
The Carnot cycle imposes a fundamental upper limit to the efficiency of a
macroscopic motor operating between two thermal baths. However, this bound
needs to be reinterpreted at microscopic scales, where molecular bio-motors and
some artificial micro-engines operate. As described by stochastic
thermodynamics, energy transfers in microscopic systems are random and thermal
fluctuations induce transient decreases of entropy, allowing for possible
violations of the Carnot limit. Despite its potential relevance for the
development of a thermodynamics of small systems, an experimental study of
microscopic Carnot engines is still lacking. Here we report on an experimental
realization of a Carnot engine with a single optically trapped Brownian
particle as working substance. We present an exhaustive study of the energetics
of the engine and analyze the fluctuations of the finite-time efficiency,
showing that the Carnot bound can be surpassed for a small number of
non-equilibrium cycles. As its macroscopic counterpart, the energetics of our
Carnot device exhibits basic properties that one would expect to observe in any
microscopic energy transducer operating with baths at different temperatures.
Our results characterize the sources of irreversibility in the engine and the
statistical properties of the efficiency -an insight that could inspire novel
strategies in the design of efficient nano-motors.Comment: 7 pages, 7 figure
Quantum Fluctuation Theorems
Recent advances in experimental techniques allow one to measure and control
systems at the level of single molecules and atoms. Here gaining information
about fluctuating thermodynamic quantities is crucial for understanding
nonequilibrium thermodynamic behavior of small systems. To achieve this aim,
stochastic thermodynamics offers a theoretical framework, and nonequilibrium
equalities such as Jarzynski equality and fluctuation theorems provide key
information about the fluctuating thermodynamic quantities. We review the
recent progress in quantum fluctuation theorems, including the studies of
Maxwell's demon which plays a crucial role in connecting thermodynamics with
information.Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and
G. Adesso (eds.), "Thermodynamics in the quantum regime - Fundamental Aspects
and New Directions", (Springer International Publishing, 2018
The alpha 7 nicotinic receptor agonist PHA-543613 hydrochloride inhibits <i>Porphyromonas gingivalis</i>-induced expression of interleukin-8 by oral keratinocytes
Objective:
The alpha 7 nicotinic receptor (α7nAChR) is expressed by oral keratinocytes. α7nAChR activation mediates anti-inflammatory responses. The objective of this study was to determine if α7nAChR activation inhibited pathogen-induced interleukin-8 (IL-8) expression by oral keratinocytes.<p></p>
Materials and methods:
Periodontal tissue expression of α7nAChR was determined by real-time PCR. OKF6/TERT-2 oral keratinocytes were exposed to <i>Porphyromonas gingivalis</i> in the presence and absence of a α7nAChR agonist (PHA-543613 hydrochloride) alone or after pre-exposure to a specific α7nAChR antagonist (α-bungarotoxin). Interleukin-8 (IL-8) expression was measured by ELISA and real-time PCR. Phosphorylation of the NF-κB p65 subunit was determined using an NF-κB p65 profiler assay and STAT-3 activation by STAT-3 in-cell ELISA. The release of ACh from oral keratinocytes in response to <i>P. gingivalis</i> lipopolysaccharide was determined using a GeneBLAzer M3 CHO-K1-blacell reporter assay.<p></p>
Results:
Expression of α7nAChR mRNA was elevated in diseased periodontal tissue. PHA-543613 hydrochloride inhibited <i>P. Gingivalis</i>-induced expression of IL-8 at the transcriptional level. This effect was abolished when cells were pre-exposed to a specific α7nAChR antagonist, α-bungarotoxin. PHA-543613 hydrochloride downregulated NF-κB signalling through reduced phosphorylation of the NF-κB p65-subunit. In addition, PHA-543613 hydrochloride promoted STAT-3 signalling by maintenance of phosphorylation. Furthermore, oral keratinocytes upregulated ACh release in response to <i>P. Gingivalis</i> lipopolysaccharide.<p></p>
Conclusion:
These data suggest that α7nAChR plays a role in regulating the innate immune responses of oral keratinocytes.<p></p>
Predicting the demand of physician workforce: an international model based on "crowd behaviors"
<p>Abstract</p> <p>Background</p> <p>Appropriateness of physician workforce greatly influences the quality of healthcare. When facing the crisis of physician shortages, the correction of manpower always takes an extended time period, and both the public and health personnel suffer. To calculate an appropriate number of Physician Density (PD) for a specific country, this study was designed to create a PD prediction model, based on health-related data from many countries.</p> <p>Methods</p> <p>Twelve factors that could possibly impact physicians' demand were chosen, and data of these factors from 130 countries (by reviewing 195) were extracted. Multiple stepwise-linear regression was used to derive the PD prediction model, and a split-sample cross-validation procedure was performed to evaluate the generalizability of the results.</p> <p>Results</p> <p>Using data from 130 countries, with the consideration of the correlation between variables, and preventing multi-collinearity, seven out of the 12 predictor variables were selected for entry into the stepwise regression procedure. The final model was: PD = (5.014 - 0.128 × proportion under age 15 years + 0.034 × life expectancy)<sup>2</sup>, with R<sup>2 </sup>of 80.4%. Using the prediction equation, 70 countries had PDs with "negative discrepancy", while 58 had PDs with "positive discrepancy".</p> <p>Conclusion</p> <p>This study provided a regression-based PD model to calculate a "norm" number of PD for a specific country. A large PD discrepancy in a country indicates the needs to examine physician's workloads and their well-being, the effectiveness/efficiency of medical care, the promotion of population health and the team resource management.</p
An experimentally-achieved information-driven Brownian motor shows maximum power at the relaxation time
We present an experimental realization of an information-driven Brownian motor by periodically cooling a Brownian particle trapped in a harmonic potential connected to a single heat bath, where cooling is carried out by the information process consisting of measurement and feedback control. We show that the random motion of the particle is rectified by symmetry-broken feedback cooling where the particle is cooled only when it resides on the specific side of the potential center at the instant of measurement. Studying how the motor thermodynamics depends on cycle period tau relative to the relaxation time tau(B) of the Brownian particle, we find that the ratcheting of thermal noise produces the maximum work extraction when tau >= 5 tau(B) while the extracted power is maximum near tau= tau(B), implying the optimal operating time for the ratcheting process. In addition, we find that the average transport velocity is monotonically decreased as tau increases and present the upper bound for the velocity
Second law, entropy production, and reversibility in thermodynamics of information
We present a pedagogical review of the fundamental concepts in thermodynamics
of information, by focusing on the second law of thermodynamics and the entropy
production. Especially, we discuss the relationship among thermodynamic
reversibility, logical reversibility, and heat emission in the context of the
Landauer principle and clarify that these three concepts are fundamentally
distinct to each other. We also discuss thermodynamics of measurement and
feedback control by Maxwell's demon. We clarify that the demon and the second
law are indeed consistent in the measurement and the feedback processes
individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.),
"Energy Limits in Computation: A Review of Landauer's Principle, Theory and
Experiments
Experimental free energy measurements of kinetic molecular states using fluctuation theorems
Recent advances in non-equilibrium statistical mechanics and single molecule
technologies make it possible to extract free energy differences from
irreversible work measurements in pulling experiments. To date, free energy
recovery has been focused on native or equilibrium molecular states, whereas
free energy measurements of kinetic states (i.e. finite lifetime states that
are generated dynamically and are metastable) have remained unexplored. Kinetic
states can play an important role in various domains of physics, such as
nanotechnology or condensed matter physics. In biophysics, there are many
examples where they determine the fate of molecular reactions: protein and
peptide-nucleic acid binding, specific cation binding, antigen-antibody
interactions, transient states in enzymatic reactions or the formation of
transient intermediates and non-native structures in molecular folders. Here we
demonstrate that it is possible to obtain free energies of kinetic states by
applying extended fluctuation relations. This is shown by using optical
tweezers to mechanically unfold and refold DNA structures exhibiting
intermediate and misfolded kinetic states.Comment: main paper (16 pages, 5 figures) and supplementary information (22
pages, 14 figures
Clinical heterogeneity can hamper the diagnosis of patients with ZAP70 deficiency
One of the severe combined immunodeficiencies (SCIDs), which is caused by a genetic defect in the signal transduction pathways involved in T-cell activation, is the ZAP70 deficiency. Mutations in ZAP70 lead to both abnormal thymic development and defective T-cell receptor (TCR) signaling of peripheral T-cells. In contrast to the lymphopenia in most SCID patients, ZAP70-deficient patients have lymphocytosis, despite the selective absence of CD8+ T-cells. The clinical presentation is usually before 2 years of age with typical findings of SCID. Here, we present three new ZAP70-deficient patients who vary in their clinical presentation. One of the ZAP70-deficient patients presented as a classical SCID, the second patient presented as a healthy looking wheezy infant, whereas the third patient came to clinical attention for the eczematous skin lesions simulating atopic dermatitis with eosinophilia and elevated immunoglobulin E (IgE), similar to the Omenn syndrome. This study illustrates that awareness of the clinical heterogeneity of ZAP70 deficiency is of utmost importance for making a fast and accurate diagnosis, which will contribute to the improvement of the adequate treatment of this severe immunodeficiency
- …