24 research outputs found

    Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    Get PDF
    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella

    The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48.

    No full text
    Mast cells are well known for their harmful role in IgE-mediated hypersensitivity reactions, but their physiological role remains a mystery. Several recent studies have reported that mast cells play a critical role in innate immunity in mice by releasing tumor necrosis factor alpha (TNF-alpha) to recruit neutrophils to sites of enterobacterial infection. In some cases, the mast cell TNF-alpha response was triggered when these cells directly bound FimH on the surface of Escherichia coli. We have identified CD48, a glycosylphosphatidylinositol-anchored molecule, to be the complementary FimH-binding moiety in rodent mast cell membrane fractions. We showed that (i) pretreatment of mast cell membranes with antibodies to CD48 or phospholipase C inhibited binding of FimH+ E. coli, (ii) FimH+ E. coli but not a FimH- derivative bound isolated CD48 in a mannose-inhibitable manner, (iii) binding of FimH+ bacteria to Chinese hamster ovary (CHO) cells was markedly increased when these cells were transfected with CD48 cDNA, and (iv) antibodies to CD48 specifically blocked the mast cell TNF-alpha response to FimH+ E. coli. Thus, CD48 is a functionally relevant microbial receptor on mast cells that plays a role in triggering inflammation

    Functional Flexibility of the FimH Adhesin: Insights from a Random Mutant Library

    Get PDF
    Type 1 fimbriae are surface organelles of Escherichia coli which mediate d-mannose-sensitive binding to different host surfaces. This binding is conferred by the minor fimbrial component FimH. Naturally occurring variants of the FimH protein have been selected in nature for their ability to recognize specific receptor targets. In particular, variants that bind strongly to terminally exposed monomannose residues have been associated with a pathogenicity-adaptive phenotype that enhances E. coli colonization of extraintestinal locations such as the urinary bladder. In this study we have used random mutagenesis to specifically identify nonselective mutations in the FimH adhesin which modify its binding phenotype. Isogenic E. coli clones expressing FimH variants were tested for their ability to bind yeast cells and model glycoproteins that contain oligosaccharide moieties rich in either terminal monomannose, oligomannose, or nonmannose residues. Both the monomannose- and the oligomannose-binding capacity of type 1 fimbriae could be altered by minor amino acid changes in the FimH protein. The monomannose-binding phenotype was particularly sensitive to changes, with extensive differences in binding being observed in comparison to wild-type FimH levels. Different structural alterations were able to cause similar functional changes in FimH, suggesting a high degree of flexibility to target recognition by this adhesin. Alteration of residue P49 of the mature FimH protein, which occurs within the recently elucidated carbohydrate-binding pocket of FimH, completely abolished its function. Amino acid changes that increased the binding capacity of FimH were located outside receptor-interacting residues, indicating that functional changes relevant to pathogenicity are likely to be due to conformational changes of the adhesin

    Biofilm Formation in a Hydrodynamic Environment by Novel FimH Variants and Ramifications for Virulence

    Get PDF
    Type 1 fimbriae are surface-located adhesion organelles of Escherichia coli that are directly associated with virulence of the urinary tract. They mediate d-mannose-sensitive binding to different host surfaces by way of the minor fimbrial component FimH. Naturally occurring variants of FimH that bind strongly to terminally exposed monomannose residues have been associated with a pathogenicity-adaptive phenotype that enhances E. coli colonization of extraintestinal locations such as the urinary tract. The FimH adhesin also promotes biofilm formation in a mannose-inhibitable manner on abiotic surfaces under static growth conditions. In this study, we used random mutagenesis combined with a novel selection-enrichment technique to specifically identify mutations in the FimH adhesin that confer on E. coli the ability to form biofilms under hydrodynamic flow (HDF) conditions. We identified three FimH variants from our mutant library that could mediate an HDF biofilm formation phenotype to various degrees. This phenotype was induced by the cumulative effect of multiple changes throughout the receptor-binding region of the protein. Two of the HDF biofilm-forming FimH variants were insensitive to mannose inhibition and represent novel phenotypes not previously identified in naturally occurring isolates. Characterization of our enriched clones revealed some similarities to amino acid alterations that occur in urinary tract infection (UTI) strains. Subsequent screening of a selection of UTI FimH variants demonstrated that they too could promote biofilm formation on abiotic surfaces under HDF conditions. Interestingly, the same correlation was not observed for commensal FimH variants. FimH is a multifaceted protein prone to rapid microevolution. In addition to its previously documented roles in adherence and invasion, we have now demonstrated its function in biofilm formation on abiotic surfaces subjected to HDF conditions. The study indicates that UTI FimH variants possess adaptations that enhance biofilm formation and suggests a novel role for FimH in UTIs associated with medical implants such as catheters
    corecore