81 research outputs found

    Annotation of negotiation processes in joint-action dialogues

    Get PDF
    Situated dialogic corpora are invaluable resources for understanding the complex relationship between language, perception, and action as they are based on naturalistic dialogue situations in which the interactants are given shared goals to be accomplished in the real world. In such situations, verbal interactions are intertwined with actions, and shared goals can only be achieved via dynamic negotiation processes based on common ground constructed from discourse history as well as the interactants' knowledge about the status of actions. In this paper, we propose four major dimensions of collaborative tasks that affect the negotiation processes among interactants, and, hence, the structure of the dialogue. Based on a review of available dialogue corpora and annotation manuals, we show that existing annotation schemes so far do not adequately account for the complex dialogue processes in situated task-based scenarios. We illustrate the effects of specific features of a scenario using annotated samples of dialogue taken from the literature as well as our own corpora, and end with a brief discussion of the challenges ahead

    Where Snow is a Landmark: Route Direction Elements in Alpine Contexts

    Get PDF
    Route directions research has mostly focused on urban space so far, highlighting human concepts of street networks based on a range of recurring elements such as route segments, decision points, landmarks and actions. We explored the way route directions reflect the features of space and activity in the context of mountaineering. Alpine route directions are only rarely segmented through decision points related to reorientation; instead, segmentation is based on changing topography. Segments are described with various degrees of detail, depending on difficulty. For landmark description, direction givers refer to properties such as type of surface, dimension, colour of landscape features; terrain properties (such as snow) can also serve as landmarks. Action descriptions reflect the geometrical conceptualization of landscape features and dimensionality of space. Further, they are very rich in the semantics of manner of motion

    Fiber Fabry-Perot tunable filter for high-speed optical packet switching

    No full text
    Tunable optical filters are important building blocks for All-Optical systems and networks. Fast optical tuning in several microseconds is necessary to perform high-speed optical packet switching. Multi- Gigabit/sec packet-switching will provide flexibility and higher network throughput when large numbers of users communicate simultaneously. One approach to achieve fast wavelength tuning is to use high-speed piezoelectrically-driven Fiber Fabry-Perot tunable filters (FFP-TFs). The requirement for tuning in microseconds raises a whole new set of challenges, such as ringing, thermostability and mechanical inertia control. It was shown that correlation between the mechanical resonance and optical response of the filter is important for the filter`s speed and for mounting hardware and control circuitry optimization. These features together with the FFP-TF`s high capacitance (approximately 0.25-0.5 microfarad) are being folded into building a special controller to substantially improve the shape of the driving signal and the response of the filter. The resultant controller enables tuning the high-speed FFP-TF three-orders-of- magnitude faster than that possible with standard commercial FFP-TFS. The fastest switching time achieved is 2.5 microseconds. As the result, a new packet-switched media access control protocol is being designed to minimize the searching time. The filter scans only once through the entire optical region and then tunes to all the required channels one after another in a few microseconds. It can help update Rainbow-2 Broadcast-and-Select High-Speed Wavelength Division Multiplexing All-Optical network that currently has a circuit- switched protocol using standard FFP-TFS

    Phenotypic heterogeneity in the stargazin allelic series.

    No full text
    The stargazer mutant mouse is characterized by its ataxic gait, head tossing, and absence seizures. The mutation was identified in the gamma 2 subunit gene of the high voltage-dependent calcium channel, Cacng2. Subsequently, two allelic variants of stargazer have arisen, waggler and stargazer 3J. In this study, we have compared these new alleles to the original stargazer allele. All three mutations affect the Cacng2 mRNA levels as they all arise from disruptions within the introns of this gene. Our results show that the mutations cause reduced Cacng2 mRNA and protein levels. Stargazer and waggler mice have the least amount of mRNA and undetectable protein, whereas stargazer 3J appears to be the mildest allele, both in terms of the phenotype and protein expression. Electroencephalographic (EEG) analysis confirmed that stargazer has frequent spike-wave discharges (SWDs); the average duration of each discharge burst is 5 seconds and recurs every minute. The waggler allele causes a greater variation in SWD activity depending on the individual mouse, and the stargazer 3J mouse has no SWDs. The preliminary characterization of this heterogeneous allelic series provides a basis to explore more biochemical and physiological parameters relating to the role of the Cacng2 product in calcium channel activity, AMPA receptor localization, and cerebellar disturbances
    • …
    corecore