1,586 research outputs found

    Tensile test of pressureless-sintered silicon nitride at elevated temperature

    Get PDF
    Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed

    Strength evaluation test of pressureless-sintered silicon nitride at room temperature

    Get PDF
    In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed

    Oblique Ion Two-Stream Instability in the Foot Region of a Collisionless Shock

    Full text link
    Electrostatic behavior of a collisionless plasma in the foot region of high Mach number perpendicular shocks is investigated through the two-dimensional linear analysis and electrostatic particle-in-cell (PIC) simulation. The simulations are double periodic and taken as a proxy for the situation in the foot. The linear analysis for relatively cold unmagnetized plasmas with a reflected proton beam shows that obliquely propagating Buneman instability is strongly excited. We also found that when the electron temperature is much higher than the proton temperature, the most unstable mode is the highly obliquely propagating ion two-stream instability excited through the resonance between ion plasma oscillations of the background protons and of the beam protons, rather than the ion acoustic instability that is dominant for parallel propagation. To investigate nonlinear behavior of the ion two-stream instability, we have made PIC simulations for the shock foot region in which the initial state satisfies the Buneman instability condition. In the first phase, electrostatic waves grow two-dimensionally by the Buneman instability to heat electrons. In the second phase, highly oblique ion two-stream instability grows to heat mainly ions. This result is in contrast to previous studies based on one-dimensional simulations, for which ion acoustic instability further heats electrons. The present result implies that overheating problem of electrons for shocks in supernova remnants is resolved by considering ion two-stream instability propagating highly obliquely to the shock normal and that multi-dimensional analysis is crucial to understand the particle heating and acceleration processes in shocks.Comment: 20 pages, 9 figures, accepted for publication in Ap

    Absence of Electron Surfing Acceleration in a Two-Dimensional Simulation

    Full text link
    Electron acceleration in high Mach number perpendicular shocks is investigated through two-dimensional electrostatic particle-in-cell (PIC) simulation. We simulate the shock foot region by modeling particles that consist of three components such as incident protons and electrons and reflected protons in the initial state which satisfies the Buneman instability condition. In contrast to previous one-dimensional simulations in which strong surfing acceleration is realized, we find that surfing acceleration does not occur in two-dimensional simulation. This is because excited electrostatic potentials have a two-dimensional structure that makes electron trapping impossible. Thus, the surfing acceleration does not work either in itself or as an injection mechanism for the diffusive shock acceleration. We briefly discuss implications of the present results on the electron heating and acceleration by shocks in supernova remnants.Comment: 12 pages, 4 figures, accepted for publication in ApJ

    Analysis of dynamic characteristics of fluid force induced by labyrinth seal

    Get PDF
    Flow patterns of the labyrinth seal are experimentally investigated for making a mathematical model of labyrinth seal and to obtain the flow induced force of the seal. First, the flow patterns in the labyrinth chamber are studied on the circumferential flow using bubble and on the cross section of the seal chamber using aluminum powder as tracers. And next, the fluid force and its phase angle are obtained from the measured pressure distribution in the chamber and the fluid force coefficients are derived from the fluid force and the phase angle. Those are similar to the expression of oil film coefficients. As a result, it is found that the vortices exist in the labyrinth chambers and its center moves up and down periodically. The pressure drop is biggest in the first stage of chambers and next in the last stage of chambers

    Aerodynamic investigation of an air-cooled axial-flow turbine. Part 2: Rotor blade tip-clearance effects on overall turbine performance and internal gas flow conditions: Experimental results and prediction methods

    Get PDF
    Total turbine blade performance was investigated while changing the blade tip clearance in three ways. The internal flow at the moving blade outlet point was measured. Experimental results were compared with various theoretical methods. Increased blade clearance leads to decreased turbine efficiency

    The Variation of Gas Mass Distribution in Galaxy Clusters: Effects of Preheating and Shocks

    Full text link
    We investigate the origin of the variation of the gas mass fraction in the core of galaxy clusters, which was indicated by our work on the X-ray fundamental plane. The adopted model supposes that the gas distribution characterized by the slope parameter is related to the preheated temperature. Comparison with observations of relatively hot (~> 3 keV) and low redshift clusters suggests that the preheated temperature is about 0.5-2 keV, which is higher than expected from the conventional galactic wind model and possibly suggests the need for additional heating such as quasars or gravitational heating on the largest scales at high redshift. The dispersion of the preheated temperature may be attributed to the gravitational heating in subclusters. We calculate the central gas fraction of a cluster from the gas distribution, assuming that the global gas mass fraction is constant within a virial radius at the time of the cluster collapse. We find that the central gas density thus calculated is in good agreement with the observed one, which suggests that the variation of gas mass fraction in cluster cores appears to be explained by breaking the self-similarity in clusters due to preheated gas. We also find that this model does not change major conclusions on the fundamental plane and its cosmological implications obtained in previous papers, which strongly suggests that not only for the dark halo but also for the intracluster gas the core structure preserves information about the cluster formation.Comment: 17 pages, to be published in Ap

    Baryon Loading of AGN Jets Mediated by Neutrons

    Full text link
    Plasmas of geometrically thick, black hole (BH) accretion flows in active galactic nuclei (AGNs) are generally collisionless for protons, and involve magnetic field turbulence. Under such conditions a fraction of protons can be accelerated stochastically and create relativistic neutrons via nuclear collisions. These neutrons can freely escape from the accretion flow and decay into protons in dilute polar region above the rotating BH to form relativistic jets. We calculate geometric efficiencies of the neutron energy and mass injections into the polar region, and show that this process can deposit luminosity as high as L_j ~ 2e-3 dot{M} c^2 and mass loading dot{M}_j ~ 6e-4 dot{M} for the case of the BH mass M ~ 1e8 M_sun, where dot{M} is mass accretion rate. The terminal Lorentz factors of the jets are Gamma ~ 3, and they may explain the AGN jets having low luminosities. For higher luminosity jets, which can be produced by additional energy inputs such as Poynting flux, the neutron decay still can be a dominant mass loading process, leading to e.g., Gamma ~ 50 for L_{j,tot} ~ 3e-2 dot{M}c^2.Comment: 7 pages, 6 figures; accepted for publication in Ap
    • …
    corecore