604 research outputs found

    Salmonella choleraesuis subsp. indica serovar bornheim causing urinary tract infection

    Get PDF
    An unusual Salmonella species, S. choleraesuis subsp. indica serovar bornheim, was isolated from the urine of a patient with aplastic anemia, diabetes mellitus, and a healed urethral injury. An immune response to this isolate was demonstrated by whole-bacterial-cell agglutination

    Dense Building Instrumentation Application for City-Wide Structural Health Monitoring

    Get PDF
    The Community Seismic Network (CSN) has partnered with the NASA Jet Propulsion Laboratory (JPL) to initiate a campus-wide structural monitoring program of all buildings on the premises. The JPL campus serves as a proxy for a densely instrumented urban city with localized vibration measurements collected throughout the free-field and built environment. Instrumenting the entire campus provides dense measurements in a horizontal geospatial sense for soil response; in addition five buildings have been instrumented on every floor of the structure. Each building has a unique structural system as well as varied amounts of structural information via structural drawings, making several levels of assessment and evaluation possible. Computational studies with focus on damage detection applied to the campus structural network are demonstrated for a collection of buildings. For campus-wide real-time and post-event evaluation, ground and building response products using CSN data are illustrating the usefulness of higher spatial resolution compared to what was previously typical with sparser instrumentation

    Reverse Remodeling of the Atria After Treatment of Chronic Stretch in Humans Implications for the Atrial Fibrillation Substrate

    Get PDF
    ObjectivesThe aim of this report was to study the effect of chronic stretch reversal on the electrophysiological characteristics of the atria in humans.BackgroundAtrial stretch is an important determinant for atrial fibrillation. Whether relief of stretch reverses the substrate predisposed to atrial fibrillation is unknown.MethodsTwenty-one patients with mitral stenosis undergoing mitral commissurotomy (MC) were studied before and after intervention. Catheters were placed at multiple sites in the right atrium (RA) and sequentially within the left atrium (LA) to determine: effective refractory period (ERP) at 10 sites (600 and 450 ms) and P-wave duration (PWD). Bi-atrial electroanatomic maps determined conduction velocity (CV) and voltage. In 14 patients, RA studies were repeated ≥6 months after MC.ResultsImmediately after MC, there was significant increase in mitral valve area (2.1 ± 0.2 cm2, p < 0.0001) with decrease in LA (23 ± 7 mm Hg to 10 ± 4 mm Hg, p < 0.0001) and pulmonary arterial pressures (38 ± 16 mm Hg to 27 ± 12 mm Hg, p < 0.0001) and LA volume (75 ± 20 ml to 52 ± 18 ml, p < 0.0001). This was associated with reduction in PWD (139 ± 19 ms to 135 ± 20 ms, p = 0.047), increase in CV (LA: 1.3 ± 0.3 mm/ms to 1.7 ± 0.2 mm/ms, p = 0.006; and RA: 1.0 ± 0.1 mm/ms to 1.3 ± 0.3 mm/ms, p = 0.002) and voltage (LA: 1.7 ± 0.6 mV to 2.5 ± 1.0 mV, p = 0.005; and RA: 1.8 ± 0.6 mV to 2.2 ± 0.7 mV, p = 0.09), and no change in ERP. Late after MC, mitral valve area remained at 2.1 ± 0.3 cm2 (p = 0.7) but with further decrease in PWD (113 ± 19 ms, p = 0.04) and RA ERP (at 600 ms, p < 0.0001), with increase in CV (1.0 ± 0.1 mm/ms to 1.3 ± 0.2 mm/ms, p = 0.006) and voltage (1.8 ± 0.7 mV to 2.8 ± 0.6 mV, p = 0.002).ConclusionsThe atrial electrophysiologic and electroanatomic abnormalities that result from chronic stretch due to MS reverses after MC. These observations suggest that the substrate predisposing to atrial arrhythmias might be reversed

    Community seismic network and localized earthquake situational awareness

    Get PDF
    Community-hosted seismic networks are a solution to the need for large numbers of sensors to operate over a seismically active region in order to accurately measure the size and location of an earthquake, assess resulting damage, and provide alerts. The Community Seismic Network is one such strong-motion network, currently comprising hundreds of elements located in California. It consists of low-cost, three-component, MEMS accelerometers capable of recording accelerations up to twice the level of gravity. The primary product of the network is to produce measurements of shaking of the ground and multiple locations of every upper floor in buildings, in the seconds during and following a major earthquake. Each sensor uses a small, dedicated ARM processor computer running Linux, and analyzes time series data in real time at hundreds of samples per second. The network reports on shaking parameters that indicate intensity of the structural response levels such as maximum floor acceleration and velocity, displacement of a floor in a building, as well as data products that depend on the response time histories. To do this, Cloud computing has been expanded through the use of statically defined subsets of sensors called cloudlets. These are smaller subsets of similar sensors that carry out customized calculations for those locations. The measurements are reported as rapidly as possible following an earthquake so that they may be incorporated into structural diagnosis and prognosis applications that can be used by first responders to prioritize their initial disaster management efforts. The cloudlet displays are customized for specific buildings and they show in real time: instantaneous displacement, inter-story drift, and resonant frequency and mode shapes using system identification software tools. The real-time display products are useful for decision-making about whether the potential for damage exists, what level of damage may have occurred and where, and whether total business disruption is necessary. City-wide dense monitoring makes it possible for emergency response managers to prioritize the target locations requiring first response on a block-by-block scale based on reports of shaking intensity

    Sequence analysis of human T cell lymphotropic virus type I strains from southern India: gene amplification and direct sequencing from whole blood blotted onto filter paper

    Get PDF
    Human T cell lymphotropic virus type I (HTLV-I) infection in India has been found to be associated with adult T cell leukaemia/lymphoma (ATLL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) among life-long residents of southern India. To examine the heterogeneity of HTLV-I strains from southern India and to determine their relationship with the sequence variants of HTLV-I from Melanesia, 1149 nucleotides spanning selected regions of the HTLV-I gag, pol, env and pX genes were amplified and directly sequenced from DNA extracted from whole blood blotted onto filter paper and from peripheral blood mononuclear cells, obtained from one patient with HAM/TSP, two with ATLL and eight asymptomatic carriers from Andhra Pradesh, Kerala and Tamil Nadu. Sequence alignments and comparisons indicated that the 11 HTLV-I strains from southern India were 99.2% to 100% identical among themselves and 98.7% to 100% identical to the Japanese prototype HTLV-I ATK. The majority of base substitutions were transitions and silent. No frameshifts, insertions, deletions or possibly disease-specific base changes were found in the regions sequenced. The observed clustering of the Indian HTLV-I strains with those from Japan, as determined by the maximum parsimony method, suggested a common source of HTLV-I infection with subsequent parallel evolution. Amplification of DNA from blood specimens collected on filter paper may be useful for the study of other blood-borne pathogens

    Dense Building Instrumentation Application for City-Wide Structural Health Monitoring

    Get PDF
    The Community Seismic Network (CSN) has partnered with the NASA Jet Propulsion Laboratory (JPL) to initiate a campus-wide structural monitoring program of all buildings on the premises. The JPL campus serves as a proxy for a densely instrumented urban city with localized vibration measurements collected throughout the free-field and built environment. Instrumenting the entire campus provides dense measurements in a horizontal geospatial sense for soil response; in addition five buildings have been instrumented on every floor of the structure. Each building has a unique structural system as well as varied amounts of structural information via structural drawings, making several levels of assessment and evaluation possible. Computational studies with focus on damage detection applied to the campus structural network are demonstrated for a collection of buildings. For campus-wide real-time and post-event evaluation, ground and building response products using CSN data are illustrating the usefulness of higher spatial resolution compared to what was previously typical with sparser instrumentation

    Automatic generation of hardware/software interfaces

    Get PDF
    Enabling new applications for mobile devices often requires the use of specialized hardware to reduce power consumption. Because of time-to-market pressure, current design methodologies for embedded applications require an early partitioning of the design, allowing the hardware and software to be developed simultaneously, each adhering to a rigid interface contract. This approach is problematic for two reasons: (1) a detailed hardware-software interface is difficult to specify until one is deep into the design process, and (2) it prevents the later migration of functionality across the interface motivated by efficiency concerns or the addition of features. We address this problem using the Bluespec Codesign Language~(BCL) which permits the designer to specify the hardware-software partition in the source code, allowing the compiler to synthesize efficient software and hardware along with transactors for communication between the partitions. The movement of functionality across the hardware-software boundary is accomplished by simply specifying a new partitioning, and since the compiler automatically generates the desired interface specifications, it eliminates yet another error-prone design task. In this paper we present BCL, an extension of a commercially available hardware design language (Bluespec SystemVerilog), a new software compiling scheme, and preliminary results generated using our compiler for various hardware-software decompositions of an Ogg Vorbis audio decoder, and a ray-tracing application.National Science Foundation (U.S.) (NSF (#CCF-0541164))National Research Foundation of Korea (grant from the Korean Government (MEST) (#R33-10095)

    Community seismic network and localized earthquake situational awareness

    Get PDF
    Community-hosted seismic networks are a solution to the need for large numbers of sensors to operate over a seismically active region in order to accurately measure the size and location of an earthquake, assess resulting damage, and provide alerts. The Community Seismic Network is one such strong-motion network, currently comprising hundreds of elements located in California. It consists of low-cost, three-component, MEMS accelerometers capable of recording accelerations up to twice the level of gravity. The primary product of the network is to produce measurements of shaking of the ground and multiple locations of every upper floor in buildings, in the seconds during and following a major earthquake. Each sensor uses a small, dedicated ARM processor computer running Linux, and analyzes time series data in real time at hundreds of samples per second. The network reports on shaking parameters that indicate intensity of the structural response levels such as maximum floor acceleration and velocity, displacement of a floor in a building, as well as data products that depend on the response time histories. To do this, Cloud computing has been expanded through the use of statically defined subsets of sensors called cloudlets. These are smaller subsets of similar sensors that carry out customized calculations for those locations. The measurements are reported as rapidly as possible following an earthquake so that they may be incorporated into structural diagnosis and prognosis applications that can be used by first responders to prioritize their initial disaster management efforts. The cloudlet displays are customized for specific buildings and they show in real time: instantaneous displacement, inter-story drift, and resonant frequency and mode shapes using system identification software tools. The real-time display products are useful for decision-making about whether the potential for damage exists, what level of damage may have occurred and where, and whether total business disruption is necessary. City-wide dense monitoring makes it possible for emergency response managers to prioritize the target locations requiring first response on a block-by-block scale based on reports of shaking intensity
    • …
    corecore