613 research outputs found
Insulator-to-metal transition of SrTiO3:Nb single crystal surfaces induced by Ar+ bombardment
In this paper, the effect of Ar+ bombardment of SrTiO3:Nb surface layers is
investigated on the macro- and nanoscale using surface-sensitive methods. After
bombardment, the stoichiometry and electronic structure are changed distinctly
leading to an insulator-to-metal transition related to the change of the Ti "d"
electron from d0 to d1 and d2. During bombardment, conducting islands are
formed on the surface. The induced metallic state is not stable and can be
reversed due to a redox process by external oxidation and even by
self-reoxidation upon heating the sample to temperatures of 300{\deg}C.Comment: 4 pages, 4 figure
Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations
Magnetic and magneto-transport properties of thin layers of the
(Ga,Mn)(Bi,As) quaternary dilute magnetic semiconductor grown by the
low-temperature molecular-beam epitaxy technique on GaAs substrates have been
investigated. Ferromagnetic Curie temperature and magneto-crystalline
anisotropy of the layers have been examined by using magneto-optical Kerr
effect magnetometry and low-temperature magneto-transport measurements.
Postgrowth annealing treatment has been shown to enhance the hole concentration
and Curie temperature in the layers. Significant increase in the magnitude of
magnetotransport effects caused by incorporation of a small amount of Bi into
the (Ga,Mn)As layers revealed in the planar Hall effect (PHE) measurements, is
interpreted as a result of enhanced spin-orbit coupling in the (Ga,Mn)(Bi,As)
layers. Two-state behaviour of the planar Hall resistance at zero magnetic
field provides its usefulness for applications in nonvolatile memory devices.Comment: 10 pages, 3 figures, to be published in the Proceedings of ICSM-2016
conferenc
Hafnium carbide formation in oxygen deficient hafnium oxide thin films
On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO)
contaminated with adsorbates of carbon oxides, the formation of hafnium carbide
(HfC) at the surface during vacuum annealing at temperatures as low as 600
{\deg}C is reported. Using X-ray photoelectron spectroscopy the evolution of
the HfC surface layer related to a transformation from insulating into
metallic state is monitored in situ. In contrast, for fully stoichiometric
HfO thin films prepared and measured under identical conditions, the
formation of HfC was not detectable suggesting that the enhanced adsorption
of carbon oxides on oxygen deficient films provides a carbon source for the
carbide formation. This shows that a high concentration of oxygen vacancies in
carbon contaminated hafnia lowers considerably the formation energy of hafnium
carbide. Thus, the presence of a sufficient amount of residual carbon in
resistive random access memory devices might lead to a similar carbide
formation within the conducting filaments due to Joule heating
Inhomogeneity of donor doping in SrTiO3 substrates studied by fluorescence-lifetime imaging microscopy
Fluorescence-lifetime imaging microscopy (FLIM) was applied to investigate
the donor distribution in SrTiO3 single crystals. On the surfaces of Nb- and
La-doped SrTiO3, structures with different fluorescence intensities and
lifetimes were found that could be related to different concentrations of Ti3+.
Furthermore, the inhomogeneous distribution of donors caused a non-uniform
conductivity of the surface, which complicates the production of potential
electronic devices by the deposition of oxide thin films on top of doped single
crystals. Hence, we propose FLIM as a convenient technique (length scale: 1
m) for characterizing the quality of doped oxide surfaces, which could
help to identify appropriate substrate materials
Proceedings of the XXXVI International School of Semiconducting Compounds
The new approach to the understanding of intrashallow donor transition in the reduced dimensionality systems is presented. The magnetospectroscopy experiments done on the CdTe/CdMgTe quantum well based samples, uniformly n-doped, show indications that the surprising lack of spectral sensitivity on applied photon energy can be understood as a result of sample response coming from its different regions. This "non spectroscopic" behaviour (in a sense of the Zeeman splitting) is a consequence of the properties of systems with reduced dimensionality where variety of centre locations in the structure results in continuous density of states available for absorption
Effect of Misfit Strain in (Ga,Mn)(Bi,As) Epitaxial Layers on their Magnetic and Magneto-Transport Properties
Effect of misfit strain in the layers of (Ga,Mn)(Bi,As) quaternary diluted
magnetic semiconductor, epitaxially grown on either GaAs substrate or (In,Ga)As
buffer, on their magnetic and magneto-transport properties has been
investigated. High-resolution X-ray diffraction, applied to characterize the
structural quality and misfit strain in the layers, proved that the layers were
fully strained to the GaAs substrate or (In,Ga)As buffer under compressive or
tensile strain, respectively. Ferromagnetic Curie temperature and
magnetocrystalline anisotropy of the layers have been examined by using
magneto-optical Kerr effect magnetometry and low-temperature magneto-transport
measurements. Post-growth annealing treatment of the layers has been shown to
enhance the hole concentration and Curie temperature in the layers.Comment: 8 pages, 3 figure
- …