26 research outputs found

    A device-dependent interface for interactive image display

    Get PDF
    The structure of the device independent Display Management Subsystem (DMS) and the interface routines that are available to the applications programmer for use in developing a set of portable image display utility programs are described

    Common variants of ZNF750, RPTOR and TRAF3IP2 genes and psoriasis risk

    Get PDF
    Psoriasis vulgaris is a genetically heterogenous disease with unclear molecular background. We assessed the association of psoriasis and its main clinical phenotypes with common variants of three potential psoriasis susceptibility genes: ZNF750, RPTOR and TRAF31P2. We genotyped 10 common variants in a cohort of 1,034 case–control individuals using Taqman genotyping assays and sequencing. Minor alleles of all four TRAF3IP2 variants were more frequent among cases. The strongest, significant association was observed for rs33980500 (OR = 2.5, p = 0.01790). Minor allele of this SNP was always present in two haplotypes found to be associated with increased psoriasis risk: rs13196377_G + rs13190932_G + rs33980500_T + rs13210247_A (OR = 2.7, p = 0.0054) and rs13196377_A + rs13190932_A + rs33980500_T + rs13210247_G (OR = 1.8, p = 0.0008). Analyses of clinically relevant phenotypes revealed association of rs33980500 with pustular psoriasis (OR = 1.2, p = 0.0109). We observed significant connection of severity of cutaneous disease with variation at rs13190932 and suggestive with three remaining TRAF3IP2 SNPs. Another positive associations were found between age of onset and familial aggregation of disease: smoking and younger age of onset, smoking and occurrence of pustular psoriasis, nail involvement and arthropatic psoriasis, nail involvement and more severe course of psoriasis. We found no statistically significant differences in the prevalence of the examined variants of RPTOR and ZNF750 genes among our cases and controls. We have replicated the association of TRAF3IP2-_rs33980500 variant with the susceptibility to psoriasis. We have found new associations with clinically relevant subphenotypes such as pustular psoriasis or moderate-to-severe cases. We ascertain no connection of RPTOR and ZNF750 variants with psoriasis or its subphenotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00403-013-1407-9) contains supplementary material, which is available to authorized users

    Gene Targeting Implicates Cdc42 GTPase in GPVI and Non-GPVI Mediated Platelet Filopodia Formation, Secretion and Aggregation

    Get PDF
    Background: Cdc42 and Rac1, members of the Rho family of small GTPases, play critical roles in actin cytoskeleton regulation. We have shown previously that Rac1 is involved in regulation of platelet secretion and aggregation. However, the role of Cdc42 in platelet activation remains controversial. This study was undertaken to better understand the role of Cdc42 in platelet activation. Methodology/Principal Findings: We utilized the Mx-cre;Cdc42 lox/lox inducible mice with transient Cdc42 deletion to investigate the involvement of Cdc42 in platelet function. The Cdc42-deficient mice exhibited a significantly reduced platelet count than the matching Cdc42 +/+ mice. Platelets isolated from Cdc42 2/2, as compared to Cdc42 +/+, mice exhibited (a) diminished phosphorylation of PAK1/2, an effector molecule of Cdc42, (b) inhibition of filopodia formation on immobilized CRP or fibrinogen, (c) inhibition of CRP- or thrombin-induced secretion of ATP and release of P-selectin, (d) inhibition of CRP, collagen or thrombin induced platelet aggregation, and (e) minimal phosphorylation of Akt upon stimulation with CRP or thrombin. The bleeding times were significantly prolonged in Cdc42 2/2 mice compared with Cdc42 +/+ mice. Conclusion/Significance: Our data demonstrate that Cdc42 is required for platelet filopodia formation, secretion an

    Xeroderma pigmentosum genes and melanoma risk

    No full text
    Xeroderma pigmentosum is a rare autosomal recessive disease that is associated with a severe deficiency in nucleotide excision repair. The presence of a distinct the nucleotide excision repair (NER) mutation signature in melanoma suggests that perturbations in this critical repair process are likely to be involved with disease risk. We hypothesized that persons with polymorphic NER gene(s) are likely to have reduced NER activity and are consequently at an increased risk of melanoma development. We assessed the association between 94 SNPs within seven XP genes (XPA–XPG) and the melanoma risk in the Polish population. We genotyped 714 unselected melanoma patients and 1,841 healthy adults to determine if there were any polymorphisms differentially represented in the disease group. We found that a significantly decreased risk of melanoma was associated with the Xeroderma pigmentosum complementation (XPC) rs2228000_CT genotype (odds ratio [OR] = 0.15; p < 0.001) and the rs2228000_TT genotype (OR = 0.11; p < 0.001) compared to the reference genotype. Haplotype analysis within XPC revealed the rs2228001_A + G1475A_G + G2061A_A + rs2228000_T + rs3731062_C haplotype (OR = 0.26; p < 0.05) was associated with a significantly decreased disease risk. The haplotype analysis within the Xeroderma pigmentosum group D (XPD) showed a modest association between two haplotypes and a decrease in melanoma risk. There were no major differences between the prevalence of the XP polymorphisms among young or older patients with melanoma. Linkage disequilibrium of XPC: rs2228001, G1475A, G2061A, rs2228000 and rs3731062 was found. The data from our study support the notion that only XPC and XPD genes are associated with melanoma susceptibility

    Urokinase-type plasminogen activator-like proteases in teleosts lack genuine receptor-binding epidermal growth factor-like domains

    No full text
    Plasminogen activation catalyzed by urokinase-type plasminogen activator (uPA) plays an important role in normal and pathological tissue remodeling processes. Since its discovery in the mid-1980s, the cell membrane-anchored urokinase-type plasminogen activator receptor (uPAR) has been believed to be central to the functions of uPA, as uPA-catalyzed plasminogen activation activity appeared to be confined to cell surfaces through the binding of uPA to uPAR. However, a functional uPAR has so far only been identified in mammals. We have now cloned, recombinantly produced, and characterized two zebrafish proteases, zfuPA-a and zfuPA-b, which by several criteria are the fish orthologs of mammalian uPA. Thus, both proteases catalyze the activation of fish plasminogen efficiently and both proteases are inhibited rapidly by plasminogen activator inhibitor-1 (PAI-1). But zfuPA-a differs from mammalian uPA by lacking the exon encoding the uPAR-binding epidermal growth factor-like domain; zfuPA-b differs from mammalian uPA by lacking two cysteines of the epidermal growth factor-like domain and a uPAR-binding sequence comparable with that found in mammalian uPA. Accordingly, no zfuPA-b binding activity could be found in fish white blood cells or fish cell lines. We therefore propose that the current consensus of uPA-catalyzed plasminogen activation taking place on cell surfaces, derived from observations with mammals, is too narrow. Fish uPAs appear incapable of receptor binding in the manner known from mammals and uPA-catalyzed plasminogen activation in fish may occur mainly in solution. Studies with nonmammalian vertebrate species are needed to obtain a comprehensive understanding of the mechanism of plasminogen activation

    Toll-like receptor agonists stimulate human neutrophil migration via activation of mitogen-activated protein kinases

    No full text
    Human neutrophil migratory responses to Toll-like receptor (TLR) agonists were studied using videomicroscopy. When challenged with lipopolysaccharide (LPS, TLR4 agonist) or N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteinyl-seryl-(lysyl)(3)-lysine (P3CSK4, TLR2 agonist), neutrophils displayed enhanced motility, which was found to reflect increased random migration but not directed migration (chemotaxis). Enhanced neutrophil motility was detected within 10 min after stimulation with LPS or P3CSK4, and was sustained for more than 80 min. Stimulation of neutrophils with LPS or P3CSK4 resulted in the activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), which preceded neutrophil migration. TLR-mediated neutrophil migration was strongly suppressed by pretreatment of cells with U0126 (MAPK/ERK kinase inhibitor) but not with U0124 (an inactive analogue of U0126) or SB203580 (a p38 MAPK inhibitor), and was almost completely abolished by pretreatment of cells with U0126 and SB203580 in combination. Randomly migrating neutrophils in response to LPS or P3CSK4 displayed directed migration when further challenged with gradient concentrations of N-formyl-methionyl-leucyl-phenylalanine (FMLP) or platelet-activating factor (PAF). These findings indicate that TLR agonists stimulate human neutrophil migration via the activation of ERK and p38 MAPK, and FMLP- or PAF-induced neutrophil chemotaxis is not affected by the pre-exposure of cells to TLR agonists
    corecore