39 research outputs found

    Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    Get PDF
    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used

    Computer applications

    No full text

    Programming "loose training" as a strategy to facilitate language generalization.

    No full text
    This study investigated the generalization of spontaneous complex language behavior across a nontraining setting and the durability of generalization as a result of programming and "loose training" strategy. A within-subject, across-behaviors multiple-baseline design was used to examine the performance of two moderately retarded students in the use of is/are across three syntactic structures (i.e., "wh" questions, "yes/no" reversal questions, and statements). The language training procedure used in this study represented a functional example of programming "loose training." The procedure involved conducting concurrent language training within the context of an academic training task, and establishing a functional reduction in stimulus control by permitting the student to initiate a language response based on a wide array of naturally occurring stimulus events. Concurrent probes were conducted in the free play setting to assess the immediate generalization and the durability of the language behaviors. The results demonstrated that "loose training" was effective in establishing a specific set of language responses with the participants of this investigation. Further, both students demonstrated spontaneous use of the language behavior in the free play generalization setting and a trend was clearly evident for generalization to continue across time. Thus, the methods used appear to be successful for training the use of is/are in three syntactic structures

    Use of the rectus abdominis muscle for abdominal stoma sphincter construction:an anatomical feasibility study

    No full text
    Permanent fecal abdominal stomas significantly decrease quality of life. Previous attempts to create continent stomas by using dynamic myoplasty procedures have resulted in disappointing outcomes, primarily owing to denervation atrophy of the muscle flap that was used in the creation of the sphincter and because of muscle fatigue resulting from continuous electrical stimulation that is received by the flap to force contraction. On the basis of these problems, we designed two separate studies: an anatomical study addressing flap denervation and a functional study addressing muscle fatigue. The present study addresses the first topic and was designed to develop a rectus abdominis muscle flap into a sphincter that was anatomically situated to create a stoma while preserving as much innervation as possible. In 24 rectus abdominis muscles of human cadavers, the neurovascular anatomy was defined, then the anatomical feasibility of two different muscle flap configurations was considered. The flaps investigated were the peninsula flap and island flap designs, with both using the most caudal segment of the rectus abdominis muscle in construction of the sphincter. Neither flap design required the killing of a nerve for stoma sphincter creation, resulting in minimal muscle denervation. The conclusion of our comparison was that the above, in conjunction with other features of the island flap design, such as muscle overlap after sphincter formation and abdominal wall positioning of the sphincter, made the island flap design better suited to stoma sphincter construction
    corecore