203 research outputs found

    Electric field dependent structural and vibrational properties of the Si(100)-H(2 \times 1) surface and its implications for STM induced hydrogen desorption

    Full text link
    We report a first principles study of the structure and the vibrational properties of the Si(100)-H(2 \times 1) surface in an electric field. The calculated vibrational parameters are used to model the vibrational modes in the presence of the electric field corresponding to a realistic STM tip-surface geometry. We find that local one-phonon excitations have short lifetimes (10 ps at room temperature) due to incoherent lateral diffusion, while diffusion of local multi-phonon excitations are suppressed due to anharmonic frequency shifts and have much longer lifetimes (10 ns at room temperature). We calculate the implications for current induced desorption of H using a recently developed first principles model of electron inelastic scattering. The calculations show that inelastic scattering events with energy transfer nℏωn \hbar \omega, where n>1, play an important role in the desorption process.Comment: 10 pages, RevTeX, epsf files. submitted to surface scienc

    Construction of transferable spherically-averaged electron potentials

    Full text link
    A new scheme for constructing approximate effective electron potentials within density-functional theory is proposed. The scheme consists of calculating the effective potential for a series of reference systems, and then using these potentials to construct the potential of a general system. To make contact to the reference system the neutral-sphere radius of each atom is used. The scheme can simplify calculations with partial wave methods in the atomic-sphere or muffin-tin approximation, since potential parameters can be precalculated and then for a general system obtained through simple interpolation formulas. We have applied the scheme to construct electron potentials of phonons, surfaces, and different crystal structures of silicon and aluminum atoms, and found excellent agreement with the self-consistent effective potential. By using an approximate total electron density obtained from a superposition of atom-based densities, the energy zero of the corresponding effective potential can be found and the energy shifts in the mean potential between inequivalent atoms can therefore be directly estimated. This approach is shown to work well for surfaces and phonons of silicon.Comment: 8 pages (3 uuencoded Postscript figures appended), LaTeX, CAMP-090594-

    Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    Full text link
    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (RR) decreases several orders of magnitude when the substrate temperature is increased from 300 K to 610 K. This is most noticeable at a bias voltage of -7 V where RR decreases by a factor of ~200 for a temperature change of 80 K, whilst it only decreases by a factor of ~3 at -5 V upon the same temperature change. The experimental data can be explained by desorption due to vibrational heating by inelastic scattering via a hole resonance. This theory predicts a weak suppression of desorption with increasing temperature due to a decreasing vibrational lifetime, and a strong bias dependent suppression due to a temperature dependent lifetime of the hole resonance.Comment: 5 pages, RevTeX, epsf files. Accepted for surface science letter

    Effect of the attachment of ferromagnetic contacts on the conductivity and giant magnetoresistance of graphene nanoribbons

    Full text link
    Carbon-based nanostructures and graphene, in particular, evoke a lot of interest as new promising materials for nanoelectronics and spintronics. One of the most important issue in this context is the impact of external electrodes on electronic properties of graphene nanoribbons (GNR). The present theoretical method is based on the tight-binding model and a modified recursive procedure for Green's functions. The results show that within the ballistic transport regime, the so called end-contacted geometry (of minimal GNR/electrode interface area), is usually more advantageous for practical applications than its side-contacted counterpart (with a larger coverage area), as far as the electrical conductivity is concerned. As regards the giant magnetoresistance coefficient, however, the situation is exactly opposite, since spin- splitting effects are more pronounced in the lower conductive side-contacted setups.Comment: 8 pages, 4 figure

    A mixed ultrasoft/normconserved pseudopotential scheme

    Get PDF
    A variant of the Vanderbilt ultrasoft pseudopotential scheme, where the normconservation is released for only one or a few angular channels, is presented. Within this scheme some difficulties of the truly ultrasoft pseudopotentials are overcome without sacrificing the pseudopotential softness. i) Ghost states are easily avoided without including semicore shells. ii) The ultrasoft pseudo-charge-augmentation functions can be made more soft. iii) The number of nonlocal operators is reduced. The scheme will be most useful for transition metals, and the feasibility and accuracy of the scheme is demonstrated for the 4d transition metal rhodium.Comment: 4 pages, 2 figure

    First principles theory of inelastic currents in a scanning tunneling microscope

    Get PDF
    A first principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below an STM tip. We calculate the desorption rate of H from Si(100)-H(2Ă—\times1) as function of the sample bias and tunnel current, and find excellent agreement with recent experimental data.Comment: 5 pages, RevTeX, epsf file
    • …
    corecore