30 research outputs found
Chemical Heterogeneity on Mercury's Surface Revealed by the MESSENGER X-Ray Spectrometer
We present the analysis of 205 spatially resolved measurements of the surface composition of Mercury from MESSENGER's X-Ray Spectrometer. The surface footprints of these measurements are categorized according to geological terrain. Northern smooth plains deposits and the plains interior to the Caloris basin differ compositionally from older terrain on Mercury. The older terrain generally has higher Mg/Si, S/Si, and Ca/Si ratios, and a lower Al/Si ratio than the smooth plains. Mercury's surface mineralogy is likely dominated by high-Mg mafic minerals (e.g., enstatite), plagioclase feldspar, and lesser amounts of Ca, Mg, and/or Fe sulfides (e.g., oldhamite). The compositional difference between the volcanic smooth plains and the older terrain reflects different abundances of these minerals and points to the crystallization of the smooth plains from a more chemically evolved magma source. High-degree partial melts of enstatite chondrite material provide a generally good compositional and mineralogical match for much of the surface of Mercury. An exception is Fe, for which the low surface abundance on Mercury is still higher than that of melts from enstatite chondrites and may indicate an exogenous contribution from meteoroid impacts
Major-Element Abundances on the Surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer
Orbital gamma-ray measurements obtained by the MESSENGER spacecraft have been analyzed to determine the abundances of the major elements Al, Ca, S, Fe, and Na on the surface of Mercury. The Si abundance was determined and used to normalize those of the other reported elements. The Na analysis provides the first abundance estimate of 2.9 plus or minus 0.1 wt% for this element on Mercury's surface. The other elemental results (S/Si = 0.092 plus or minus 0.015, Ca/Si = 0.24 plus or minus 0.05, and Fe/Si = 0.077 plus or minus 0.013) are consistent with those previously obtained by the MESSENGER X-Ray Spectrometer, including the high sulfur and low iron abundances. Because of different sampling depths for the two techniques, this agreement indicates that Mercury's regolith is, on average, homogenous to a depth of tens of centimeters. The elemental results from gamma-ray and X-ray spectrometry are most consistent with petrologic models suggesting that Mercury's surface is dominated by Mg-rich silicates. We also compare the results with those obtained during the MESSENGER flybys and with ground-based observations of Mercury's surface and exosphere
Incidence and prevalence of upper-extremity musculoskeletal disorders. A systematic appraisal of the literature
BACKGROUND: A systematic appraisal of the worldwide incidence and prevalence rates of UEDs available in scientific literature was executed to gauge the range of these estimates in various countries and to determine whether the rates are increasing in time. METHODS: Studies that recruited at least 500 people, collected data by using questionnaires, interviews and/or physical examinations, and reported incidence or prevalence rates of the whole upper-extremity including neck, were included. RESULTS: No studies were found with regard to the incidence of UEDs and 13 studies that reported prevalence rates of UEDs were included. The point prevalence ranged from 1.6–53%; the 12-months prevalence ranged from 2.3–41%. One study reported on the lifetime prevalence (29%). We did not find evidence of a clear increasing or decreasing pattern over time. The case definitions for UEDs used in the studies, differed enormously. Therefore, it was not possible to pool the data. CONCLUSION: There are substantial differences in reported prevalence rates on UEDs. Main reason for this is the absence of a universally accepted way of labelling or defining UEDs. If we want to make progress in this field, the first requirement is to agree on unambiguous terminology and classification of EUDs
Characterization and Petrologic Interpretation of Olivine-Rich Basalts at Gusev Crater, Mars
Rocks on the floor of Gusev crater are basalts of uniform composition and mineralogy. Olivine, the only mineral to have been identified or inferred from data by all instruments on the Spirit rover, is especially abundant in these rocks. These picritic basalts are similar in many respects to certain Martian meteorites (olivine-phyric shergottites). The olivine megacrysts in both have intermediate compositions, with modal abundances ranging up to 20-30%. Associated minerals in both include low-calcium and high-calcium pyroxenes, plagioclase of intermediate composition, iron-titanium-chromium oxides, and phosphate. These rocks also share minor element trends, reflected in their nickel-magnesium and chromium-magnesium ratios. Gusev basalts and shergottites appear to have formed from primitive magmas produced by melting an undepleted mantle at depth and erupted without significant fractionation. However, apparent differences between Gusev rocks and shergottites in their ages, plagioclase abundances, and volatile contents preclude direct correlation. Orbital determinations of global olivine distribution and compositions by thermal emission spectroscopy suggest that olivine-rich rocks may be widespread. Because weathering under acidic conditions preferentially attacks olivine and disguises such rocks beneath alteration rinds, picritic basalts formed from primitive magmas may even be a common component of the Martian crust formed during ancient and recent times
Melt inclusions in augite of the Nakhla martian meteorite: Evidence for basaltic parental melt
Nakhla contains crystallized melt inclusions that were trapped in augite and olivine when these phases originally formed on Mars. Our study involved rehomogenization (slow-heating and fast-heating) experiments on multiphase melt inclusions in Nakhla augite. We studied melt inclusions trapped in augite because this phase re-equilibrated with the external melt to a lesser extent than olivine and results could be directly compared with previous Nakhla melt inclusion studies. Following heating and homogenization of encapsulated melt inclusions, single mineral grains were mounted and polished to expose inclusions. Major element chemistry was determined by electron microprobe. The most primitive melt inclusion analyzed in Nakhla NA03 is basaltic and closely matches previously reported nakhlite parent melt compositions. MELTS equilibrium and fractional crystallization models calculated for NA03 and previous Nakhla parent melt estimates at QFM and QFM-1 produced phase assemblages and compositions that can be compared to Nakhla. Of these models, equilibrium crystallization of NA03 at QFM-1 produced the best match to mineral phases and compositions in Nakhla. In all models, olivine and augite co-crystallize, consistent with the hypothesis that olivine is not xenocrystic but has undergone subsolidus re-equilibration. In addition, measured melt inclusion compositions plot along the MELTS-calculated liquid line of descent and may represent pockets of melt trapped at various stages during crystallization. We attempt to resolve discrepancies between previous estimates of the Nakhla parental melt composition and to reinterpret the results of a previous study of rehomogenized melt inclusions in Nakhla. Melt inclusions demonstrate that Nakhla is an igneous rock whose parent melt composition and crystallization history reflect planetary igneous processes.The Meteoritics & Planetary Science archives are made available by the Meteoritical Society and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202
Search for Absorption Features in Mercury's Visible Reflectance Spectra: Recent Results from MESSENGER
Search for Absorption Features in Mercury's Visible Reflectance Spectra: Recent Results from MESSENGE