2,492 research outputs found

    Coherent Neutrino Scattering in Dark Matter Detectors

    Full text link
    Coherent elastic neutrino- and WIMP-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next generation ton-scale dark matter detector could discover neutrino-nucleus coherent scattering, a precisely-predicted Standard Model process. A high intensity pion- and muon- decay-at-rest neutrino source recently proposed for oscillation physics at underground laboratories would provide the neutrinos for these measurements. In this paper, we calculate raw rates for various target materials commonly used in dark matter detectors and show that discovery of this interaction is possible with a 2 ton\cdotyear GEODM exposure in an optimistic energy threshold and efficiency scenario. We also study the effects of the neutrino source on WIMP sensitivity and discuss the modulated neutrino signal as a sensitivity/consistency check between different dark matter experiments at DUSEL. Furthermore, we consider the possibility of coherent neutrino physics with a GEODM module placed within tens of meters of the neutrino source.Comment: 8 pages, 4 figure

    Supersensitive PSA-Monitored neoadjuvant hormone treatment of clinically localized prostate cancer: Effects on positive margins, tumor detection and epithelial cells in bone marrow

    Get PDF
    Objective: The present study was done to investigate the effects of supersensitive PSA-controlled inductive treatment on positive margins, detection of tumor and epithelial cells in bone marrow of 101 patients with untreated and clinically localized prostatic carcinoma (cT1-3N0M0). Methods: Hormonal treatment was given until PSA (DPD Immulite(R) third-generation assay) reached 0.3 ng/ml in only 1 case. Of the 101 patients, 82 had a measurable hypoic lesion on initial transrectal ultrasound. 84% of these became smaller, 7.5% remained unchanged and 8.5% increased. Of the 101 prostatectomy specimens, 20 (20%) were margin-positive. The incidence of affected margins was relatively high (35% from 55 patients) with cT3 tumors, but almost negligible (2% from 46 patients) in cT1-2 tumor. Our pathologists, despite their great experience in evaluating hormonally treated prostates (>500 cases) and using immunohistochemical staining, were unable to detect carcinoma in 15 (15%) specimens. Whereas only 2 (4%) of the 55 cT3 specimens were without detectable tumor, this incidence rised to 28% (13 of 46 prostates) in patients with cT1-2 tumors. Of the initial 29 patients with epithelial cells in bone marrow, only 4 (14%) remained positive after controlled induction and all of them had fewer cells than before. Conclusion: Endocrine induction controlled by a supersensitive PSA assay and continued until reaching PSA nadir is highly effective in clearing surgical margins and eliminating tumor cells from bone marrow. It seems to be clearly superior to the conventional 3 months of pretreatment at least in cT1-2 tumors in respect to surgical margins and detectability of tumor in the resected prostate. A definitive statement about the value of endocrine induction can only be given by prospective randomized studies, with optimal drugs, doses and treatment time. But the conventional 3 months of pretreatment are far from exploiting the possibilities of this therapeutic option

    Improved Upsilon Spectrum with Dynamical Wilson Fermions

    Full text link
    We present results for the b \bar b spectrum obtained using an O(M_bv^6)-correct non-relativistic lattice QCD action, where M_b denotes the bare b-quark mass and v^2 is the mean squared quark velocity. Propagators are evaluated on SESAM's three sets of dynamical gauge configurations generated with two flavours of Wilson fermions at beta = 5.6. These results, the first of their kind obtained with dynamical Wilson fermions, are compared to a quenched analysis at equivalent lattice spacing, beta = 6.0. Using our three sea-quark values we perform the ``chiral'' extrapolation to m_eff = m_s/3, where m_s denotes the strange quark mass. The light quark mass dependence is found to be small in relation to the statistical errors. Comparing the full QCD result to our quenched simulation we find better agreement of our dynamical data with experimental results in the spin-independent sector but observe no unquenching effects in hyperfine-splittings. To pin down the systematic errors we have also compared quenched results in different ``tadpole'' schemes as well as using a lower order action. We find that spin-splittings with an O(M_bv^4) action are O(10%) higher compared to O(M_bv^6) results. Relative to the results obtained with the plaquette method the Landau gauge mean link tadpole scheme raises the spin splittings by about the same margin so that our two improvements are opposite in effect.Comment: 24 pages (latex file, Phys Rev D style file, uses epsf-style

    Light Spectrum and Decay Constants in Full QCD with Wilson Fermions

    Get PDF
    We present results from an analysis of the light spectrum and the decay constants f_{\pi} and f_V^{-1} in Full QCD with n_f=2 Wilson fermions at a coupling of beta=5.6 on a 16^3x32 lattice.Comment: 3 pages, LaTeX with 4 eps figures, Talk presented at LATTICE96(spectrum

    Bottomonium from NRQCD with Dynamical Wilson Fermions

    Full text link
    We present results for the b \bar b spectrum obtained using an O(M_bv^6)-correct non-relativistic lattice QCD action. Propagators are evaluated on SESAM's three sets of dynamical gauge configurations generated with two flavours of Wilson fermions at beta = 5.6. Compared to a quenched simulation at equivalent lattice spacing we find better agreement of our dynamical data with experimental results in the spin-independent sector but observe no unquenching effects in hyperfine-splittings. To pin down the systematic errors we have also compared quenched results in different ``tadpole'' schemes and used a lower order action.Comment: Talk presented at LATTICE'97, 3 pages, Late

    Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering

    Full text link
    Light sterile neutrinos have been introduced as an explanation for a number of oscillation signals at Δm21\Delta m^2 \sim 1 eV2^2. Neutrino oscillations at relatively short baselines provide a probe of these possible new states. This paper describes an accelerator-based experiment using neutral current coherent neutrino-nucleus scattering to strictly search for active-to-sterile neutrino oscillations. This experiment could, thus, definitively establish the existence of sterile neutrinos and provide constraints on their mixing parameters. A cyclotron-based proton beam can be directed to multiple targets, producing a low energy pion and muon decay-at-rest neutrino source with variable distance to a single detector. Two types of detectors are considered: a germanium-based detector inspired by the CDMS design and a liquid argon detector inspired by the proposed CLEAR experiment.Comment: 10 pages, 7 figure

    An Estimate of alpha_S from Bottomonium in Unquenched QCD

    Full text link
    We estimate the strong coupling constant from the perturbative expansion of the plaquette. The scale is set by the 2S-1S and 1P-1S splittings in bottomonium which are computed in NRQCD on dynamical gauge configurations with nf=2 degenerate Wilson quarks at intermediate masses. We have increased the statistics of our spectrum calculation in order to reliably extrapolate in the sea-quark mass. We find a value of alpha_MS(m_Z) = 0.1118(26) which is somewhat lower than previous estimates within NRQCD.Comment: LATTICE98(heavyqk

    Towards the glueball spectrum of full QCD

    Get PDF
    We present first results on masses of the scalar and tensor glueballs as well as of the torelon from simulations of QCD with two light flavours of Wilson fermions. The gauge configurations of extent 16^3*32 at beta = 5.6 and kappa = 0.156, 0.157 and 0.1575 have been generated as part of the SESAM collaboration programme. The present lattice resolutions correspond to 1/a = 2.0-2.3 GeV and ratios m(pi)/m(rho) = 0.83, 0.76 and 0.71, respectively. Studies on larger lattice volumes and closer to the chiral limit are in progress.Comment: 4 pages, LaTeX, espcrc2 and epsf styles required, 4 epsf figures, poster presented by G. Bali at Lattice '9
    corecore